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A new method is presented for the explicit Eulerian finite difference computation
of shock capturing problems involving multiple resolved material phases in three
dimensions. We solve separately for each phase the equations of fluid dynamics or
solid mechanics, using as interface boundary conditions artificially extended rep-
resentations of the individual phases. For fluids we use a new 3D spatially unsplit
implementation of the piecewise parabolic (PPM) method of Colella and Woodward.
For solids we use the 3D spatially unsplit Eulerian solid mechanics method of Miller
and Colella. Vacuum and perfectly incompressible obstacles may also be employed
as phases.

A separate problem is the time evolution of material interfaces, which are repre-
sented by planar segments constructed with a volume-of-fluid method. The volume
fractions are advanced in time using a second-order 3D spatially unsplit advection
routine with a velocity field determined by solution of interface-normal two-phase
Riemann problems. From the Riemann problem solutions we also determine cross-
interface momentum and energy fluxes.

The volume fractions in mixed cells may be arbitrarily small, which would ordi-
narily make the Courant–Friedrichs–Lewy time step stability limit arbitrarily small
as well. We overcome this limitation using the mass-redistribution formalism to
conservatively redistribute generalized mass in the neighborhood of the split cells.

1 Work at the Lawrence Berkeley National Laboratory was sponsored by the US Department of Energy (DOE)
Mathematical, Information, and Computing Sciences Division Contract DE-AC03-76SF00098, and a DOE LDRD
award to GM. Other work was supported by a subcontract from the California Institute of Technology Center
for the Simulation of Dynamic Response in Materials, which in turn is supported by the Academic Strategic
Alliances Program of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under DOE Contract B341492.
Development of the PPM implementation presented here was supported in part by the ASCI/ASAP Center for
Astrophysical Thermonuclear Flashes at the University of Chicago under DOE Contract B341495.
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We present an application of this method to an explosion contained in a metal can:
a reactive fluid (approximating PBX 9404) is encased within an elastic-plastic solid
(approximating copper) surrounded by vacuum. Our implementation is in parallel,
and with adaptive mesh refinement. c© 2002 Elsevier Science (USA)

Key Words: solid mechanics; fluid dynamics; shock waves; Godunov method;
elasticity; plasticity; solid–fluid coupling; adaptive mesh refinement; AMR.

1. INTRODUCTION

We are concerned with computing large-deformation flows in problems consisting of mul-
tiple resolved phases. The algorithm described here combines two approaches in the treat-
ment of free boundaries. One is the treatment of the propagation of surfaces in space in terms
of an equivalent evolution of volume fractions [20, 30], first introduced in the 1970s for
representing fluid interfaces. The second is the use of strongly conservative finite-volume
discretizations of the time-dependent irregular control volumes on either side of the moving
interface. This latter approach was first used by Noh in the CEL code [29]. The combina-
tion of these two techniques has been used very successfully in a variety of free-boundary
problems in fluid dynamics, such as shock dynamics [5, 9], and combustion fronts [19, 24,
34]. However, the combination has not been applied to problems involving material inter-
faces. More typically, volume-of-fluid representations have been used in material interface
problems in a hybrid mode, i.e., in which the material properties are multiply valued in a
cell, but the velocity is single valued [13, 26, 30]. In the present approach, all of the state
variables are represented as having distinct values in each phase, with appropriate jump
conditions applied at the phase boundaries.

Our method embraces fluids as well as elastic-plastic solids in a single Eulerian frame-
work. This approach is motivated by the excellent performance of Eulerian high-order Go-
dunov methods for single material phases. Furthermore, in the Eulerian framework adaptive
mesh refinement (AMR) [3, 6] is a relatively mature technique for dynamically applying
high numerical resolution to those parts of a problem domain that require it, while solving
less sensitive regions on less expensive, coarser computational grids. In combination, Eu-
lerian high-order Godunov methods with AMR have been proven to obtain highly accurate
and efficient solutions to shock capturing problems. Our implementation includes AMR
capability in 3D and in parallel.

2. OVERVIEW OF METHOD

We are concerned here with N spatially distinct (resolvable) material phases �,� =
1, 2, . . . , N . For each phase we have a system of conservation laws

∂U�

∂t
+ ∇ · F�(U ) = G� on ��(t). (1)

The number of components in the vector U� of conserved densities, and the vector G� of
source terms, will in general be different for different phases, and the flux functions F�(U )
will differ in number and content: different material phases are governed by different physics
and kinematics.



28 MILLER AND COLELLA

On domain boundaries, ∂��,�(t) = ∂��(t) ∩ ∂��(t), compatibility conditions

H (U�, U�) = 0 on ∂��,�(t) (2)

exist which determine the evolution of the domains ��(t).
We are interested in developing a numerical method for (1) and (2) on a structured

Eulerian grid. We denote with integer subscripts i, j, k cell-centered quantities, and with
half-integer subscripts, e.g., i + 1

2 , j, k, face-centered quantities. Increments of time are
indicated with the superscript n or n + 1.

Let us denote by ϒi jk a Cartesian grid control volume,

ϒi jk :=

x, y, z

∣∣∣∣∣∣∣
xi− 1

2
≤ x ≤ xi+ 1

2
and

y j− 1
2

≤ y ≤ y j+ 1
2

and

zk− 1
2

≤ z ≤ zk+ 1
2

 , (3)

and by ∂ϒi− 1
2 , j,k (for example) the “left” x face of cell i, j, k,

∂ϒi− 1
2 , j,k :=

x, y, z

∣∣∣∣∣∣∣
x = xi− 1

2
and

y j− 1
2

≤ y ≤ y j+ 1
2

and

zk− 1
2

≤ z ≤ zk+ 1
2

 . (4)

We define volume fractions �

V �
�,n
i jk =

∫
ϒi jk∩�� (tn )

dx dy dz, (5)

where V = �xi�y j�zk is the volume of cell i jk. We also define the phase “apertures”

A�
i− 1

2 , j,k =
tn+1∫
tn

dt
∫

∂ϒi− 1
2 , j,k ∩��(t)

dy dz. (6)

Finally we define the interface boundary aperture

AB,�
i jk =

tn+1∫
tn

dt
∫

ϒi jk ∩∂��(t)

dx dy dz. (7)

A finite volume discretization of (1) is obtained by integrating (1) over the space–time
volume of the computational cell i jk occupied by phase �; i.e.,

tn+1∫
tn

dt
∫

ϒi jk ∩��(t)

dx dy dz

(
∂

∂t

∂

∂x

∂

∂y

∂

∂z

)
.


U�

F x,�(U )
F y,�(U )
Fz,�(U )

=
tn+1∫
tn

dt
∫

ϒi jk ∩��(t)

dx dy dz G�.

(8)
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Then, by application of the divergence theorem, we have

��,n+1Vi jkŪ�,n+1
i jk − ��,n Vi jkŪ�,n

i jk + A�
i+ 1

2 , j,k F̄ x,�

i+ 1
2 , j,k

− A�
i− 1

2 , j,k F̄ x,�

i− 1
2 , j,k

+ A�
i, j+ 1

2 ,k F̄ y,�

i, j+ 1
2 ,k

− A�
i, j− 1

2 ,k F̄ y,�

i, j− 1
2 ,k

+ A�
i, j,k+ 1

2
F̄ z,�

i, j,k+ 1
2
− A�

i, j,k− 1
2
F̄ z,�

i, j,k− 1
2

+ AB,� F̄ B,�
i jk = �t�̄�V Ḡ�

i jk, (9)

with the notation q̄ denoting the average over the appropriate regions in space–time: �̄i jk

is the average over [tn, tn+1], Ū�
i jk the average over ϒi jk ∩ ��(t), and F̄ x,�

i+ 1
2 , j,k

the average
over ∂ϒi+ 1

2 , j,k ∩ ��(t). Rearranging the terms in (9) leads to a finite-volume discretization
of ∇ · F�; i.e.,

Ū�,n+1
i jk = Ū�,n

i jk − �t(∇ · F�)C + �t
�̄�

��,n+1
Ḡ�

i jk, (10)

with (∇ · F�)C the conservative flux difference

�t(∇ · F�)C = ��,n+1 − ��,n

��,n+1
Ū�,n

i jk + 1

��,n+1Vi jk

(
A�

i+ 1
2 , j,k F̄ x,�

i+ 1
2 , j,k

− A�
i− 1

2 , j,k F̄ x,�

i− 1
2 , j,k

+ A�
i, j+ 1

2 ,k F̄ y,�

i, j+ 1
2 ,k

− A�
i, j− 1

2 ,k F̄ y,�

i, j− 1
2 ,k

+ A�
i, j,k+ 1

2
F̄ z,�

i, j,k+ 1
2

− A�
i, j,k− 1

2
F̄ z,�

i, j,k− 1
2
+ AB,� F̄ B,�

i jk

)
. (11)

For the case G�
i jk = 0, the discretization (10) satisfies a discrete conservation law of the

form ∑
i jk

�̄
�,n+1
i jk Ū�,n+1

i jk =
∑
i jk

�̄
�,n
i jk Ū�,n + (boundary terms), (12)

where the sum is over an arbitrary subset of the control volumes, and where the boundary
terms are a sum of fluxes evaluated at the faces bounding the region corresponding to those
control volumes.

There are two issues that must be resolved in order to specify a numerical method
based on (10), (11). The first is the choice of quadrature rules with which to replace the
averages F̄, Ū with functions of equally spaced grid values. The second issue is that a
straightforward explicit discretization typically has a maximum stable time step given by a
Courant–Friedrichs–Lewy condition that is no better than vmax�t = O(h�1/3) (where vmax

is the maximum signal speed in that cell) and could be as small as vmax�t = O(h�) for a
boundary whose normal is aligned with one of the coordinate directions. To deal with these
issues, we take an approach first introduced in [4], following the ideas in [10].

Our primary dependent variables are discretized on the appropriate subsets of the rectan-
gular grid on either side of the front: for all (i, j, k) such that��,n

i jk > 0. U�,n
i jk ≈ U (i�x, j�y,

k�z, tn), the update of U�,n
i jk to time tn+1 = tn + �t , is given in the following steps.

1. For all cells for which �
�,n
i jk = 0, �

�,n+1
i jk > 0, initialize U�,n

i jk .

2. For all faces adjacent to cells with �
�,n
i jk �= 0 or �

�,n+1
i jk �= 0, we compute estimates

to the fluxes F x,�

i+ 1
2 , j,k

≈ F x,�((i + 1
2 )�x, j�y, k�z). We use these fluxes to compute

(∇ · F�)C by making the substitution Ū n,�
i jk ← U n,�

i jk , F̄ x,�

i+ 1
2 , j,k

← F x,�

i+ 1
2 , j,k

, in (11). We
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also use these fluxes to compute a nonconservative but stable estimate to ∇ · F�:

�t(∇ · F�)NC = �t

�xi

(
F x,�

i+ 1
2 , j,k

− F x,�

i− 1
2 , j,k

)
+ �t

�y j

(
F y,�

i, j+ 1
2 ,k

− F y,�

i, j− 1
2 ,k

)
+ �t

�zk

(
Fz,�

i, j,k+ 1
2
− Fz,�

i, j,k− 1
2

)
. (13)

3. Perform a preliminary stable update to Ū� using a linear hybridization of (∇ · F�)C

and (∇ · F�)NC :

U�,n+1,re f
i jk = U�,n

i jk − �t
[
�

�,n+1
i jk (∇ · F�)C + (

1 − �
�,n+1
i jk

)
(∇ · F�)NC

]
. (14)

Because the weight multiplying (∇ · F�)C is �
�,n+1
i jk , the small denominator in (11) is

canceled, and we expect that the resulting update formula is stable. However, U�,n+1,ref
i jk

does not satisfy a conservation relation of the form (12). We can compute �M�
i jk , the

difference between the total mass in the control volume given by the preliminary
update and that given by a conservative update based on (∇ · F�)C alone:

�M�
i jk = (

1 − �
�,n+1
i jk

)
�

�,n+1
i jk [(∇ · F�)C − (∇ · F�)NC ]. (15)

4. After the preliminary updates for all of the cells have been performed, distribute the
mass deficit �M�

i jk onto the grid to maintain conservation:

U�,n+1
i jk := U�,n+1

i jk +
i+1∑

l=i−1

j+1∑
m= j−1

k+1∑
p=k−1

wi jk

Wlmp
�M�

lmp. (16)

The weights wi jk are assumed to be nonnegative, bounded from above uniformly as
� → 0. The normalization factor Wi jk is given by

Wi jk =
i+1∑

l=i−1

j+1∑
m= j−1

k+1∑
p=k−1

�
�,n+1
lmp Vlmpwlmp. (17)

In the present work, we will use mass-weighted distribution, i.e., wi jk = �
�,n+1,ref
i jk , the

value of the density after the preliminary update. Mass weighting was found to provide
more-robust solutions than volume weighting (wi jk = 1) in problems involving strong
shocks [32].

In the calculation of (∇ · F)C , we compute approximations to the averages along surfaces
and volumes by replacing those averages with estimates of the values evaluated at the centers
of the Cartesian cells and faces ϒi jk, ∂ϒi− 1

2 , j,k , etc. Since the location of the centroids of
the control volumes and apertures differ from the centers of the Cartesian cells and faces by
O(h), this leads to a discretization that is formally inconsistent, i.e., that has a truncation
error that is O(1) relative to h, at the moving boundary. It is possible to construct a formally
consistent method, i.e., one whose truncation error is O(h) [11, 21, 27]. However, the
present approach has been used with great success for tracking shocks [4, 15] and fixed
solid-wall boundaries [32]. It is also a substantial improvement from a formal standpoint
over capturing methods, which have a formal truncation error that is O(h−1) [47].

In the remainder of this paper we expand on the ideas introduced here and demonstrate
their use with some examples.
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In Section 3 we elaborate on geometry issues. Our approach is based on discretizing a
transport equation for a volume fraction density for each phase, the averages of which over
cells are the volume fractions �. The specific form of the transport equation is motivated
by previous work in multifluid representations of interfaces [13, 26]; the connection to the
mathematics and physics being modeled here is discussed in Section 3.2. Our discretization
of the volume fraction transport equation uses local tangent-plane approximations to the
interface constructed from the volume fractions �� , as described in Section 3.1. In Section
3.3 we describe how our geometric description of ���(t) is used to compute apertures A� .

In Section 4 we describe the computation of fluxes F(U ). We describe the computation
of extended states U�,ext, and high-order Godunov methods for the computation of second-
order-accurate fluxes F . Our implementation uses an Eulerian Godunov method for solid
mechanics described in [25], and a new non-spatially split implementation of the piecewise
parabolic method (PPM) for fluids, described here.

In Section 5 we describe an implementation of the overall method to shock capturing
computations with fluids and solids and vacuum. First we specify the variables U� , flux
functions F�(U ), and source terms G� appropriate to each material phase. We describe
the constitutive models (equations of state, chemical reaction modeling, and plastic flow
laws) that provide closure conditions for the evolution equations. An example is given of
the interface compatibility equation (2): the interface-normal solid–fluid Riemann problem
used to construct an interface velocity field to evolve the phase domains �(t). Finally,
we present example calculations. One-dimensional solid–fluid and solid–vacuum examples
demonstrate the accuracy of the method. A three-dimensional example is also described
which includes adaptive mesh refinement (AMR).

In Section 6 we summarize our findings and describe steps one might take to improve
the order of accuracy of the method.

3. INTERFACE MOTION AND GEOMETRIC DESCRIPTION

3.1. Volume-of-Fluid Interface Reconstruction

We use the volume fraction �� as the fundamental variable that determines the spa-
tial distribution �� of material phase �. From the volume fractions, a piecewise planar
representation of the material interface may be constructed. The reconstructed interface is
chosen to satisfy two constraints. First, the calculated planar interface segment in cell i jk
breaks the cell into parts with a calculated volume fraction �

�,calc
i jk that is exactly equal

to the actual value; �
�,calc
i jk = ��

i jk . Second, the calculated piecewise planar interface is an
approximation to the least-squares best fit in the neighborhood of cell i jk. Specifically, we
desire an interface (�n, d),

nx x + ny y + nzz = d, (18)

with outward-directed normal unit vector �n, �n · �n = 1, that minimizes the sum of squares
error SOS between calculated and input volume fractions on a 5 × 5 × 5 stencil:

SOSi jk(�ni jk, di jk) =
i+2∑

l=i−2

j+2∑
m= j−2

k+2∑
p=k−2

(
�

�,calc
lmp (�ni jk, di jk) − ��

lmp

)2
. (19)

In two dimensions, piecewise linear interfaces obeying analogous constraints (on a 3 × 3
stencil of cells) have been shown to provide second-order accuracy for test problems in-
volving material advection [35].
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Instead of solving the constrained least-squares problem directly, we approximate its
solution using the ELVIRA algorithm of Pilliod and Puckett [35]. This algorithm determines
a finite list of N candidate interface normals �nk, k = 1, 2, . . . , N . For each normal vector, an
intercept dk is calculated which gives the exact volume fractions for cell i jk. This enforces
the first constraint. The sum-of-squares error is then computed for each candidate plane
(�nk, dk), and the single plane with the least sum-of-squares error is chosen to represent the
interface segment. The algorithm, described below, has the property of calculating exactly
the planar interface when the input volume fractions on a 5 × 5 × 5 stencil are consistent
with the existence of a single planar interface passing through the center cell.

The 3D ELVIRA algorithm begins by summing the volume fractions in a 3 × 3 × 5 block
of cells in the direction z (Fig. 1):

vlm =
∑

p=k−2,k+2

Vlmp�
�
lmp,

l = i − 1, i + 1,

m = j − 1, j + 1.
(20)

In this 3 × 3 array, the summed volume fraction vlm is assumed proportional to the height,
in the z direction, of the interface at coordinate xl , ym ; i.e.,

vlm

�xl�ym
= c − nx

nz
xl + ny

nz
ym, (21)

where c is a constant (the indices lm for which this assumption holds best are selected by the
ELVIRA algorithm). Thus, for each triplet of index pairs, ratios nx/nz and ny/nz (and the

FIG. 1. (a) A 3 × 3 × 5 block of volume fractions (schematically illustrated by shading using a yet-to-be-
determined planar interface) are summed columnwise to give a 3 × 3 set of sums v (b) from which noncolinear
triplets of points may be used to estimate a reconstructed interface-normal vector. The sums vi, j−1, vi+1, j−1, and
vi+1, j (indicated by arrows) are compatible with the exact plane from which the fractions � in this example
were derived. The ELVIRA algorithm will select the plane determined from these sums since the corresponding
sum-of-squares error will be zero. For each of the remaining sums, the plane crosses the face k + 5

2
, leading to an

underestimate of the column volume beneath the plane. Planes determined from these other sums will therefore
lead to nonzero sum-of-squares errors.
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constant c) may be calculated. Given these ratios, the normal vector �n = (nx , ny, nz) may
be calculated to within a sign factor by applying the normalization condition �n · �n = 1. The
sign may be resolved by choosing the sign of nz to be consistent with the calculated center
of mass [37] (see also [35]). When the z moment of the volume distribution is small, the
sign may not be accurately determined by the center-of-mass constraint. In that case, both
sign possibilities are tested. The constraint for normal component nz is considered weak if
the absolute value of the z component of the center of mass of the central 3 × 3 × 3 block
is less than 0.2 times the width �z of the central cell.

In projection z, the 24 noncolinear triplets that include the center of the projection (i, j) are
tested. This gives rise to between 24 and 48 candidate normal vectors. This same procedure
is applied in the x and y directions, to yield a total of 72 to 144 candidate normal vectors.

It may happen that the 5 × 5 × 5 array of volume fractions has a symmetry which does
not appear in the vector that provides the lowest sum-of-squares error. We explicitly enforce
symmetry by testing the symmetry of the fraction array, and by appropriately symmetrizing
the trial normal vectors prior to calculating their sum-of-squares error. For example, on a
uniform grid when ��

i+l, j+m,k+p = ��
i+l, j+p,k+m, l, m, p = −2, . . . , 2, symmetry dictates

ny = nz . All test vectors ñ are then modified to obey this symmetry:

(
nx

ny, nz

)
←

 ñx

sign(ñ y + ñz)
√

1
2

(
1 − ñ2

x

)
 , if ny = nz symmetry indicated. (22)

3.2. Interface Advection

Following [13, 26] we evolve material phase fluid fractions by solving the fluid fraction
advection equation

∂

∂t
�� + ∂

∂xi
· (��vi ) = �� M̄

M�
∇ · v (23a)

with

M̄i jk =
(∑

�

�
�
i jk

M�
i jk

)−1

. (23b)

v is the velocity field associated with the interface of phase �; its computation is described in
Section 5.3.4. M has the meaning of an isentropic modulus of incompressibility; for solids
undergoing homogeneous deformation, or for fluids more generally, M is the isentropic
bulk modulus. These moduli are discussed further in Section 5.3.5. Because of the term M̄ ,
this equation is a collective part of our method (see also Section 5.3).

The above equations are formally equivalent to an advection equation for �, since the
terms proportional to ∇ · v vanish, and v is continuous at the interface. However, we use
the form (23) because discretization errors arising from the volume-of-fluid representation
may cause them to be nonzero. In the area of multifluid calculations, the use of (23) to
compute the effective dynamics is controversial, since the underlying physical assumptions
of pressure matching at the interface and changes of state being isentropic are violated when
a shock intersects the interface. In the present case, we use a formulation based on those
physical assumptions to be consistent with the rest of the algorithm, which is based on the
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same assumptions. In practice, the region where the assumptions are violated is a set of
codimension 2 or smaller, and it has been observed in tracking other discontinuities using
this approach to be correctly treated by virtue of conservation.

We discretize Eq. (23a) by first solving the left hand side in conservation form,

�̃�
i jk =

Vi jk�
�,n
i jk + V�

i− 1
2 , j,k

− V�
i+ 1

2 , j,k
+ V�

i, j− 1
2 ,k

− V�
i, j+ 1

2 ,k
+ V�

i, j,k− 1
2
− V�

i, j,k+ 1
2

Vi jk + V tot
i− 1

2 , j,k
− V tot

i+ 1
2 , j,k

+ V tot
i, j− 1

2 ,k
− V tot

i, j+ 1
2 ,k

+ V tot
i, j,k− 1

2
− V tot

i, j,k+ 1
2

. (24)

Here,V�
i− 1

2 , j,k
is the volume of phase � advected across cell face i − 1

2 , j, k in the time inter-

val �t , and V tot
i− 1

2 , j,k
is the total material volume advected across that face. The calculation

of these advected volumes is described below.
The volume fractions �̃� computed from the left hand side of Eq. (23a) do not in general

sum to one:
∑

� �̃� �= 1. In fact,

�t(∇ · v) = 1 −
∑

�

�̃�. (25)

The final solution to Eq. (23a) is then given by

�
�,n+1
i jk = �̃�

i jk + �̃�
i jk M̄ i jk

M�
i jk

1 −
∑

�

�̃
�
i jk

, (26)

with M̄ given by (23b).
We floor these calculated fractions to avoid smearing the interface

�
�,n+1
i jk ←


0 if �

�,n+1
i, j,k ≤ �,

1 if �
�,n+1
i, j,k ≥ 1 − �,

�
l,n+1
i jk otherwise,

(27)

with � = 10−7 in our test problems.
The volume fluxes V used in Eq. (24) are calculated using a non-spatially split advection

algorithm developed by Pilliod and Puckett [35] based on the characteristic tracing approach
of Bell et al. [5]. This method uses a face-centered velocity field, which we construct as
follows.

We describe a method in Section 5.3 for the calculation of a cell-centered interface
velocity field. From this cell-centered interface velocity field we construct face-centered
values by averaging,

vx,i− 1
2 , j,k = 1

2
(vx,i−1, j,k + vx,i, j,k),

vy,i, j− 1
2 ,k = 1

2
(vy,i, j−1,k + vy,i, j,k), (28)

vz,i, j,k− 1
2

= 1

2
(vz,i, j,k−1 + vz,i, j,k).

Following Bell et al. we write the conservation law for the left hand side of Eq. (23a) as

∂��

∂t
+ vx

∂��

∂x
+ ∂(��vy)

∂y
+ ∂(��vz)

∂z
+ �� ∂vx

∂x
= 0. (29)
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FIG. 2. The volume fluxes through the i + 1
2

face (rectangle abcd) of cell i jk are given by the sum of
(i) the volume abcdefgh, where plane efgh is displaced from abcd by −(vx )i+ 1

2 , j,k�t ; (ii) a correction
to (i) due to vx having a nonzero gradient dvx/dx ; and (iii) the transverse volume fluxes through rectangles
abfe, bcgf, cdhg, and adhe.

Taking the velocity component vx to be constant, and integrating by parts over the space–
time volume traced by characteristics passing through face i + 1

2 , j, k, we have, assuming
vx,i+ 1

2 , j,k ≥ 0 for this example (see Fig. 2),

V�
i+ 1

2 , j,k =
∫
abcdefgh

��dV +V�
adeh +V�

abef −V�
bcfg −V�

cdgh − �t

2

∂vx

∂x

∫
abcdefgh

��dV,

(30a)

V tot
i+ 1

2 , j,k =
∫
abcdefgh

dV +V tot
adeh +V tot

abef −V tot
bcfg −V tot

cdgh − �t

2

∂vx

∂x

∫
abcdefgh

dV,

(30b)

where

∂vx

∂x
=

vx,i+ 1
2 , j,k − vx,i− 1

2 , j,k

�xi
, (31)

and where

a = (
xi+ 1

2
, y j− 1

2
, zk− 1

2

)
, (32a)

e = (
xi+ 1

2
, −vx,i+ 1

2 , j,k�t, y j− 1
2
, zk− 1

2

)
, (32b)

etc. In Eq. (30), the integral
∫

��dV is the part of volume abcdefgh occupied by phase
�. This is calculated with elementary geometry using the coordinates abcdefgh and the
time tn planar interface (�n, d), if one exists.

To evaluate the transverse flux Vadeh appearing in (30) (for example), we write Eq. (23a)
as

∂��

∂t
+ vx

∂��

∂x
+ vy

∂��

∂y
+ ∂(��vz)

∂z
+ �� ∂vx

∂x
+ �� ∂vy

∂y
= 0. (33)
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FIG. 3. The volume fluxes through rectangle adhe contributing to the volume fluxes through face i + 1
2

of
cell i jk are given by the sum of (i) the volume of the prism adhepq; (ii) a correction due to dvx/dx and dvy/dy
being nonzero; and (iii) the transverse volume fluxes through the triangles dhq and aep.

Now, holding velocities vx and vy constant, and integrating by parts (assuming vy,i, j− 1
2 ,k > 0

in this example; see Fig. 3),

V�
adeh =

∫
adehpq

��dV + V�
aep − V�

dhq − �t

3

(
∂vx

∂x
+ ∂vy

∂y

)∫
adehpq

��dV, (34a)

V tot
adeh =

∫
adehpq

dV + V tot
aep − V tot

dhq − �t

3

(
∂vx

∂x
+ ∂vy

∂y

)∫
adehpq

dV, (34b)

where

∂vx

∂x
=

vx,i+ 1
2 , j−1,k − vx,i− 1

2 , j−1,k

�xi
, (35a)

∂vy

∂y
=

vy,i, j− 1
2 ,k − vy,i, j− 3

2 ,k

�y j−i
, (35b)

and where

p =
{(

xi+ 1
2
− �tvx,i+ 1

2 , j−1,k, y j− 1
2
− �tvy,i, j− 1

2 ,k, zk− 1
2

)
if vx,i+ 1

2 , j−1,kvx,i+ 1
2 , j,k > 0,(

xi+ 1
2
, y j− 1

2
− �tvy,i, j− 1

2 ,k, zk− 1
2

)
otherwise,

(36)

and similarly for pointq. Note that in (36) we limit the velocity vx at face i + 1
2 , j − 1, k − 1

to ensure that its sign is the same as at face i + 1
2 , j, k.

To determine the transverse volume flux Vaep, appearing in (34), write Eq. (23a) as

∂��

∂t
+ vx

∂��

∂x
+ vy

∂��

∂y
+ vz

∂��

∂z
+ �� ∂vx

∂x
+ �� ∂vy

∂y
+ �� ∂vz

∂z
= 0. (37)

Holding vx , vy , and vz constant, and integrating by parts (assuming vz,i, j−1,k− 1
2

> 0 for this
example; see Fig. 4),

V�
aep =

∫
aepr

��dV − �t

4

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)∫
aepr

��dV, (38a)
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FIG. 4. The volume fluxes through triangle aep contributing to the volume fluxes through face i + 1
2

of cell
i jk are given by the volume of the tetrahedron aepr and a correction due to dvx/dx, dvy/dy, and dvz/dz being
nonzero.

V tot
aep =

∫
aepr

dV − �t

4

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)∫
aepr

dV, (38b)

where

∂vx

∂x
=

vx,i+ 1
2 , j−1,k−1 − vx,i− 1

2 , j−1,k−1

�xi
, (39a)

∂vy

∂y
=

vy,i, j− 1
2 ,k−1 − vy,i, j− 3

2 ,k−1

�y j−i
, (39b)

∂vz

∂z
=

vz,i, j−1,k− 1
2
− vz,i, j−1,k− 3

2

�zk−i
, (39c)

and where

rx =
{

xi+ 1
2
− �tvx,i+ 1

2 , j−1,k−1 if vx,i+ 1
2 , j−1,k−1vx,i+ 1

2 , j,k > 0,

xi+ 1
2

otherwise,
(40a)

ry =
{

y j− 1
2
− �tvy,i, j− 1

2 ,k−1 if vy,i, j− 1
2 ,k−1vy,i, j− 1

2 ,k > 0,

y j− 1
2

otherwise,
(40b)

rz = zk− 1
2
− �tvz,i, j−1,k− 1

2
. (40c)

Figure 5 demonstrates the fidelity of this volume advection scheme using the test problem
of [37]. A notched block is rotated with a constant prescribed rotational velocity field. The
prescribed velocity is calculated explicitly at each cell face, circumventing step (28). The
computational domain is 100 × 100 × 100, with 10 computational cells per unit distance.
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FIG. 5. A notched block of size 3 × 4 × 5 with four corner notches, 1 × 1 × 1 each, taken off the +z side,
before and after rotation through 2� radians in 400 time steps. The figures display the outline of each computational
cell, truncated when interfaces are present by the piecewise planar reconstructed interface—not a constant volume
fraction isosurface. The axis of rotation passes through the dot and the diagonally opposite corner; rotation is
clockwise in this orientation.

Figure 5 should be directly compared with Fig. 3 of [37] (see also Figs. 16 and 18 of
[22]). Comparisons in two dimensions, with convergence results demonstrating second-
order accuracy, appear in [35].

In two-material problems, only one material phase volume fraction (say �0) need be
advanced: at each step of the algorithm where we compute volume fluxes V0 and V tot, we
have trivially V1 = V tot − V0. For two-material problems, if one then used instead of (23a)
the simpler equation

∂

∂t
�� + ∂

∂xi
· (��vi ) = ��∇ · v, (41)

equivalent to M� being equal for all phases, for example, then one might thereby circumvent
the collective nature of this algorithm. However, for three-material or more-general N-
material problems, the condition

∑
� �� = 1 is not automatically satisfied. This is because

our interface model assumes a single piecewise planar interface in each computational
cell. When more than two phases meet in a single cell, this assumption cannot be valid.
Also, different interfaces will have different velocity fields. The term ∇ · v appearing in
(23a) cannot therefore be deduced from the computed V tot obtained in advecting any single
phase �, but must instead be obtained by separately advecting each of the N material phase
volume fractions and renormalizing them collectively (via the RHS of (23a) or some other
expedient).

This incompatibility between three-material junctions and piecewise planar interface
representations leads to other ambiguities within our overall method. In particular, it ne-
cessitates a renormalization of apertures (Section 3.3) that is not necessary where only two
phases meet. We note that two-material interfaces form a manifold of codimension 1, and
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three-material interfaces form one of codimension 2. Therefore, the overwhelming majority
of our problem domain is free of these complications. According to the truncation error
analysis in [11, p. 165], truncation errors as large as O(h−1) associated with the ad hoc
treatment of codimension 2 states still lead to solutions that converge in L1, provided the
method remains stable.

3.3. Space–Time Apertures

A space–time aperture A� is the time-integrated area though which fluxes of material
phase � may pass unobstructed through the cell face. Interior to a single-phase domain,
fluxes are unobstructed and, for example, A�

i+ 1
2 , j,k

= �t�y j�zk . In general, the sum over

phases of the apertures on a given face is �t times the area of the face: e.g., in a two-
material system, A0

i+ 1
2 , j,k

+ A1
i+ 1

2 , j,k
= �t�y j�zk . An exception to this rule occurs when

the interface is stationary and coincident with the cell face. Then, A0
i+ 1

2 , j,k
= A1

i+ 1
2 , j,k

= 0:

neither phase’s flux crosses the interface.
We calculate the apertures using cell-centered time tn and time tn+1 reconstructed inter-

faces. Since the apertures are face centered, we average the apertures calculated from left-
and right-cell data, e.g.,

Ai+ 1
2 , j,k = 1

2

(
AL ,i+ 1

2 , j,k + AR,i+ 1
2 , j,k

)
. (42)

Figure 6 shows a mixed cell containing a time tn and tn+1 reconstructed interface in-
tersecting the face i + 1

2 , j, k. The volume beneath these interfaces contains phase � (the
interface normal is outward directed by convention). In our implementation, there is no
constraint placed on the interface normals; thus the interfaces differ by translation as well
as rotation. We assume, given

nn
x x + nn

y y + nn
z z = dn at tn and (43a)

nn+1
x x + nn+1

y y + nn+1
z z = dn+1 at tn+1, (43b)

that

nx (t)x + ny(t)y + nz(t)z = d(t), (44)

FIG. 6. Time t n and time t n+1 piecewise planar interfaces are shown in fractional cell i, j, k. The aperture
Ai+ 1

2 , j,k is given by the integral over �t of area on face i + 1
2
, j, k accessible to the fluid.
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with

nx (t) = nn
x + (

nn+1
x − nn

x

)
� (t), (45a)

ny(t) = nn
y + (

nn+1
y − nn

y

)
� (t), (45b)

nz(t) = nn
z + (

nn+1
z − nn

z

)
� (t), (45c)

d(t) = dn + (dn+1 − dn)� (t), (45d)

� (t) = t − tn

tn+1 − tn
. (45e)

With this linear interpolation algorithm the vector �n(t) is not, in general, normalized.
In the time interval [tn, tn+1] the shape of the interpolated interface (44) contained

within cell i jk may change topology. These changes occur when the interface crosses
one of the eight corners of the cell. We calculate these intersections, sort them in time,
and estimate the time integral of the area beneath the interfaces using the trapezoidal sum
rule.

For example, the tn and tn+1 interfaces of Fig. 6 give an interpolated interface whose
intersection with face i + 1

2 , j, k defines the (curved) surface abfdce (Fig. 7) in the space
yzt . The volumeaa’bb’cc’dee’f is the time-integrated area beneath the interfaces on the
+x side of cell i jk. At time tf the interpolated interface crosses the corner i + 1

2 , j + 1
2 , k −

1
2 , and the topology of the interface changes. We approximate volumeaa’bb’cc’dee’f as

AL ,i+ 1
2 , j,k ≈ (tf − tn)

(areaaa’bb’+ areaee’f)

2
(46)

+ (tn+1 − tf)
(areaee’f+ areacc’d)

2
.

The circumstance occurs that a tn or a tn+1 interface exists in cell i jk, but not both. In
this case, the missing interface is estimated. We take the existing interface and translate it
along its normal vector in time using the time tn extended interface velocity field.

FIG. 7. Aperture calculation shown in yzt space. A surface is constructed by interpolation between the time
t n interface ab and the t n+1 interface cd. The interpolation function assumes that all coefficients of the plane
(nx , ny, nz, d) are linear in time. The surface may therefore be twisted. The interpolated function changes topology
at ef.
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Pember et al. [32] note that the interface aperture AB may be computed from the cell-face
apertures through a divergence theorem trick; i.e.,

ñx AB,� = A�
i− 1

2 , j,k − A�
i+ 1

2 , j,k,

ñ y AB,� = A�
i, j− 1

2 ,k − A�
i, j+ 1

2 ,k, (47)

ñz AB,� = A�
i, j,k− 1

2
− A�

i, j,k+ 1
2
,

from which, with ñ · ñ = 1, one may compute ñ and AB .

4. FLUX CALCULATION

4.1. Single-Phase Extended States

It is necessary to extend data for phase � into the two-cell border of cells �� = 0
surrounding the region where phase � exists (where �� �= 0). This is because the first
border of cells ��,n = 0 may be occupied at the next time step, ��,n+1 �= 0, and fluxes
must be calculated on all faces of this cell. At a minimum, we assume that flux calculation
requires some estimate of cell-centered densities on both sides of the face.

We perform this extension by some averaging scheme. We then modify the momentum
and energy values of the extended cells to incorporate some information about the interface
velocity field. Our approach gives extended state descriptions which are accurate to O(h).
To achieve higher order accuracy, extrapolation is required [27].

Extension by averaging was suggested by [4]. This extension algorithm, implemented in
two passes, is as follows. We use a volume-weighted average in the first pass,

U�,n,ext
i jk =

∑i+1
l=i−1

∑ j+1
m= j−1

∑k+1
p=k−1 Vlmp�

�,n
lmpU�,n

lmp∑i+1
l=i−1

∑ j+1
m= j−1

∑k+1
p=k−1 Vlmp�

�,n
lmp

, (48)

to extend data into the first border of boundary cells. In the second pass we use simple
averaging,

U�,n,ext
i jk =

∑i+1
l=i−1

∑ j+1
m= j−1

∑k+1
p=k−1 VlmpU�,n,ext

lmp∑i+1
l=i−1

∑ j+1
m= j−1

∑k+1
p=k−1 Vlmp

. (49)

Pilliod [33] introduced a different extension scheme, which he advocated for interface
velocity extension (Fig. 8). We optionally use this scheme for vector quantities and the com-
ponents of the tensors (Fig. 9). Pilliod’s scheme for vectors �q extends separately the com-
ponents qx , qy , and qz and also extends the magnitude |�q|. After extension of these four
quantities by method (48), one then renormalizes the extended vector (qext

x , qext
y , qext

z ) so that
its length is given by the value (|�q|)ext already obtained by extrapolation. This renormaliza-
tion procedure is conducted twice: once after executing method (48), and again after method
(49). To apply Pilliod’s extension method to tensors, we treat each row as an independent
vector.

Another algorithmic choice is whether to extend in primitive or conserved variables (as
indicated in (48) and (49)). In the examples described later, we use conserved variables and
Pilliod’s method.
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FIG. 8. Vector averages by Pilliod’s scheme (first column of figures), and straightforward componentwise
averaging (second column) for three cases.

We found in certain stiff modeling experiments (solid and gas) that the robustness of our
method was improved by modifying the extended states to incorporate some information
regarding interface velocity. The difference between the interface-normal velocity and the
material velocity is given by the vector

�v = [n · (vinterface − vmaterial)]�n. (50)

We use this vector difference to modify the extended state velocity according to the
prescription

vextended
material ← vextended

material + �v, (51)

where the �v is the Pilliod average of �v over neighboring cells that contain an interface:

�̃v = 1

|nbh|
∑
nbh

�v, (52a)

|�̃v| = 1

|nbh|
∑
nbh

(�v · �v)1/2, (52b)

�v = |�̃v|
(�̃v · �̃v)1/2

�̃v. (52c)

For the set of cells immediately adjacent to cells containing valid data, nbh is the set of
27 nearest-neighbor cells. For the cells one removed, nbh is the set of 125 nearest and
second-nearest-neighbor cells.

FIG. 9. Tensor averages by Pilliod’s scheme (first set), and straightforward componentwise averaging (second
set).
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4.2. Single-Phase Integration

Each single-phase region is given a boundary of “ghost cell” data, determined from a
boundary condition, or obtained by extension (Section 4.1). The single-phase regions are
then advanced in time with high-order Godunov methods. The approach we use for solid
mechanics is basically identical with the approach described in [25]. For fluid mechanics,
we use a variation of the piecewise parabolic method (PPM) [16]. Our PPM implementation
differs from the original in two essential ways. First, our implementation is 3D without use
of spatial operator splitting. Instead, we use the high-order non-split method of [10, 40].
Second, the limiters we use are different than in [16]. We use simpler methods and avoid
altogether the “discontinuity detection” algorithm.

We present below our unsplit-PPM implementation. Emphasis is placed on elucidating
the differences between our PPM algorithm and the corresponding solid mechanics solver
[25], which is based on piecewise linear reconstructions. We describe this integrator without
reference to material boundaries. It should be understood that the update is performed wher-
ever ��,n �= 0, and also in the surrounding cells where ��,n = 0 but possibly ��,n+1 �= 0.
Thus the data U� must be extended, U�,ext. For clarity we will omit both the “�” phase
designation and the “ext” extended-state designation.

In the interior of a single-phase region, the fluid update is constructed using the unsplit-
PPM approach, as described below. When extended-state information enters the compu-
tation, we limit the method locally to be first-order accurate (thus reference to data three
or more cells removed from the interface is circumvented). The solid mechanics solver is
similarly modified for this multiphase application.

4.2.1. Unsplit-PPM Conservative Update

We use the method of [10, 40] to solve (1) without the use of spatial operator splitting.
Use of this technique is motivated by the observation that with operator splitting, one tends
to observe grid-oriented artifacts. For instance, an expanding circle in 2D will develop
an octagonal profile with split spatial operators. Full corner coupling introduced via the
approaches of [10, 40] significantly mitigates that effect.

Discretized on a rectangular structured grid, the equations of fluid dynamics (1) are solved
using

U n+1
i jk = U n

i jk − �t

�x

[
F

x,n+ 1
2

i+ 1
2 , j,k

− F
x,n+ 1

2

i− 1
2 , j,k

]
− �t

�y

[
F

y,n+ 1
2

i, j+ 1
2 ,k

− F
y,n+ 1

2

i, j− 1
2 ,k

]
− �t

�z

[
F

z,n+ 1
2

i, j,k+ 1
2
− F

z,n+ 1
2

i, j,k− 1
2

]
+ �tGn+ 1

2 , (53)

where (for example) F x,n+ 1
2 is a flux centered in on the space–time centroid of the x side

of a computational cell. These fluxes are obtained using a second-order corner-coupled
advection scheme [10, 40]. Schematically, we obtain these fluxes by solution of Riemann
problemsR(qL , qR) using particular left and right states qL and qR . Here, q denotes a vector
of primitive variables. A mapping between primitive and conserved variables is understood:
q ↔ U . We approximate the solution to fluid-phase Riemann problems using the method
of [12].

The first step in the non-operator-split approach is a predictor flux using left and right
states obtained (as described in Section 4.2.2) using the PPM reconstruction with upwind
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characteristic tracing:

F̃ x
i+ 1

2 , j,k = F x
(
R
(

q
n+ 1

2

x L ,i+ 1
2 , j,k

, q
n+ 1

2

x R,i+ 1
2 , j,k

))
,

F̃ y
i, j+ 1

2 ,k
= F y

(
R
(

q
n+ 1

2

yL ,i, j+ 1
2 ,k

, q
n+ 1

2

y R,i, j+ 1
2 ,k

))
, (54)

F̃ z
i, j,k+ 1

2
= Fz

(
R
(

q
n+ 1

2

zL ,i, j,k+ 1
2
, q

n+ 1
2

z R,i, j,k+ 1
2

))
.

The second step in 3D is the construction of six secondary predictors. Here, for example,
F̃ x |y

i+ 1
2 , j,k

has the meaning of “an x-directed flux with L/R states affected by the y-direction

predictor flux”; i.e.,

F̃ x |y
i+ 1

2 , j,k
= F x

(
R
(

q ′(y)n+ 1
2

x L ,i+ 1
2 , j,k

, q ′(y)n+ 1
2

x R,i+ 1
2 , j,k

))
,

F̃ x |z
i+ 1

2 , j,k
= F x

(
R
(

q ′(z)n+ 1
2

x L ,i+ 1
2 , j,k

, q ′(z)n+ 1
2

x R,i+ 1
2 , j,k

))
,

F̃ y|x
i, j+ 1

2 ,k
= F y

(
R
(

q ′(x)n+ 1
2

yL ,i, j+ 1
2 ,k

, q ′(x)n+ 1
2

y R,i, j+ 1
2 ,k

))
,

(55)

F̃ y|z
i, j+ 1

2 ,k
= F y

(
R
(

q ′(z)n+ 1
2

yL ,i, j+ 1
2 ,k

, q ′(z)n+ 1
2

y R,i, j+ 1
2 ,k

))
,

F̃ z|x
i, j,k+ 1

2
= Fz

(
R
(

q ′(x)n+ 1
2

zL ,i, j,k+ 1
2
, q ′(x)n+ 1

2

z R,i, j,k+ 1
2

))
,

F̃ z|y
i, j,k+ 1

2
= Fz

(
R
(

q ′(y)n+ 1
2

zL ,i, j,k+ 1
2
, q ′(y)n+ 1

2

z R,i, j,k+ 1
2

))
,

with, e.g.,

U ′(y)n+ 1
2

x L ,i+ 1
2 , j,k

= U
n+ 1

2

x L ,i+ 1
2 , j,k

− �t

3�y j

(
F̃ y

i, j+ 1
2 ,k

− F̃ y
i, j− 1

2 ,k

)
, (56)

and with the primitive variables q ′ in (55) derived from the corresponding conserved vari-
ables U ′ in (56) by mapping.2

Finally, the fluxes entering (53) are fully corner coupled. For example, the flux F x
i+ 1

2 , j,k

has the meaning of “an x-directed flux constructed from L/R states that are fully coupled
with flow in the y, z, and combined ±y ±z directions”; i.e.,

F
x,n+ 1

2

i+ 1
2 , j,k

= F x
(
R
(

q ′′n+ 1
2

x L ,i+ 1
2 , j,k

, q ′′n+ 1
2

x R,i+ 1
2 , j,k

))
,

F
y,n+ 1

2

i, j+ 1
2 ,k

= F y
(
R
(

q ′′n+ 1
2

yL ,i, j+ 1
2 ,k

, q ′′n+ 1
2

y R,i, j+ 1
2 ,k

))
, (57)

F
z,n+ 1

2

i, j,k+ 1
2

= Fz
(
R
(

q ′′n+ 1
2

zL ,i, j,k+ 1
2
, q ′′n+ 1

2

z R,i, j,k+ 1
2

))
,

with, e.g.,

U ′′n+ 1
2

x L ,i+ 1
2 , j,k

= U
n+ 1

2

x L ,i+ 1
2 , j,k

− �t

2�y j

(
F̃ y|z

i, j+ 1
2 ,k

− F̃ y|z
i, j− 1

2 ,k

)
− �t

2�zk

(
F̃ z|y

i, j,k+ 1
2
− F̃ z|y

i, j,k− 1
2

)
.

(58)

2 Flux differencing as in (56) updates conserved variables. This was not presented correctly in [25].
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The Riemann solver ([12]; see also Section 5.3) takes as input the pressures PL , PR of the
left and right states in addition to the primitive variables qL , qR . Pressure is not a conserved
variable, and so the updates (56) and (58) do not directly give corrected pressures. The
simplest approach to solving this problem is a recalculation of the equation of state. For the
present ideal gas model, this would be just fine. For some applications, however, the equation
of state evaluation is one of the most computationally expensive parts of the solution. With
this in mind, we employ a thermodynamic update based on partial differentiation of E(� , S).

In each computational cell, we determine the quantities

PE ≡ ∂ P

∂E

∣∣∣∣
�E

(59)

and

P�E ≡ ∂ P

∂(�E)

∣∣∣∣
E

(60)

at the same time that we evaluate the equation of state. For an ideal gas, PE = 0 and
P�E = (	p − 1). Then, in conjunction with the conservative variable update (56), we ad-
ditionally solve a pressure update. For example,

P ′(y)n+ 1
2

x L ,i+ 1
2 , j,k

= P
n+ 1

2

x L ,i+ 1
2 , j,k

+ (PE )n
i, j,k�E + (P�E )n

i, j,k�(�E), (61)

with

�E = E ′(y)n+ 1
2

x L ,i+ 1
2 , j,k

− En+ 1
2

x L ,i+ 1
2 , j,k

, (62a)

�(�E) = �
′(y)n+ 1

2

x L ,i+ 1
2 , j,k

E ′(y)n+ 1
2

x L ,i+ 1
2 , j,k

− �
n+ 1

2

x L ,i+ 1
2 , j,k

En+ 1
2

x L ,i+ 1
2 , j,k

. (62b)

A similar correction takes place after conservative update (58).
After determination of fully corner-coupled fluxes (57) we construct a preliminary update

Ũ n+1 using (53), but with omission of the source terms G. The source terms G are then
determined using averaged values of the time tn and preliminary time (tn+1) primitive
variables:

Ũ n+1
i jk = U n

i jk − �t

�x

[
F

x,n+ 1
2

i+ 1
2 , j,k

− F
x,n+ 1

2

i− 1
2 , j,k

]
− �t

�y

[
F

y,n+ 1
2

i, j+ 1
2 ,k

− F
y,n+ 1

2

i, j− 1
2 ,k

]
− �t

�z

[
F

z,n+ 1
2

i, j,k+ 1
2
− F

z,n+ 1
2

i, j,k− 1
2

]
, (63a)

q̃n+1
i jk ← Ũ n+1

i jk , (63b)

q̄i jk = 1

2

[
q̃n+1

i jk + qn
i jk

]
, (63c)

U n+1
i jk = Ũ n+1

i jk + �tGi jk(q̄i jk). (63d)

4.2.2. PPM Reconstruction

High-order Godunov methods rely on calculation of second-order face- and time-centered
fluxes. The first step toward calculating these is the reconstruction of the spatial distribution
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q(x) beginning with the cell-centered discretization qi . This reconstruction step is one
dimensional and computed separately in each of the grid directions. The notation will be
one dimensional as well, except where higher dimensionality is introduced via a 3D limiter.

The method described here was first derived by [16], and substantial additional detail and
justification can be found therein. Our implementation of this reconstruction differs from
the original mainly in the design of limiters. Colella and Woodward used two monotonicity-
related limiters, both of which may be found here. They also used a third “flattening” limiter.
Our flattening limiter is similar to theirs and differs principally in being multidimensional.
They also had a slope-steepening “contact detection” feature, which we omit altogether.
That feature was useful for tracking material interfaces (contact discontinuities), and the
point of this report is to introduce a different strategy for that problem. We caution the
reader that while we try to adopt as much of the notation of [16] as possible, we deviate
in several places. The most confusing of these changes regards labeling of face-centered
values. In their notation, qL ,i (qR,i ) denotes the left (right) face-centered value associated
with cell i . Instead we use throughout qR,i− 1

2
(qL ,i+ 1

2
) to denote these positions: in Colella

and Woodward, subscripts L/R refer to the sides of cells; here they refer to the sides of
faces.

First we compute the average cross-cell difference in the primitive variables, assuming a
quadratic interpolation:

�qi = 1

2
(qi+1 − qi−1). (64)

This equation, and (66) below, assumes that all �xi are equal. More general expressions
appear in [16].

A linear reconstruction based on these slopes may introduce new extrema. To enforce
monotonicity we limit �qi with the method of van Leer [43]:

�qvL
i = min(|�qi |, 2|qi+1 − qi |, 2|qi − qi−1|)sgn(�qi ). (65)

Using these limited cross-cell differences, together with the cell-centered values qi−1, qi ,
qi+1, qi+2, we interpolate the data to obtain an estimate of the cell face value qi+ 1

2
:

qi+ 1
2
= qi + 1

2
(qi+1 − qi ) − 1

6

(
�qvL

i+1 −�qvL
i

)
. (66)

When not limited (�qvL :=�q) (66) is the fourth-order estimate [16]:

qi+ 1
2
= 7

12
(qi+1 + qi ) − 1

12
(qi+2 + qi−1). (67)

At this point, we have single-valued estimates of the cell face values of the primitive
variables at time tn . These values incorporate some sensitivity to linear monotonicity but
do not necessarily provide a monotonic reconstruction, particularly in conjunction with a
quadratic model. In anticipation of further limiting, which will give rise to double-valued
face-centered values, we introduce the notation qL ,i+ 1

2
and qR,i+ 1

2
:

qL ,i+ 1
2

= qi+ 1
2
, (68a)

qR,i+ 1
2

= qi+ 1
2
. (68b)
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If one were to construct a piecewise parabolic (quadratic) interpolation q(x) in the range
[xi− 1

2
, xi+ 1

2
] using the values qR,i− 1

2
, qi , and qL ,i+ 1

2
, then the function q(x), x ∈ [xi− 1

2
, xi+ 1

2
],

could take on values outside the range qR,i− 1
2
, qi , qL ,i+ 1

2
. To prevent this from happening,

we reset the face values as necessary using the quadratic limiter:

qL ,i+ 1
2

:= qi

qR,i− 1
2

:= qi

}
if

(
qi+ 1

2
− qi

)(
qi − qi− 1

2

)≤ 0, (69a)

qR,i− 1
2

:= 3qi − 2qi+ 1
2

if
(
qi+ 1

2
− qi− 1

2

)(
qi −

qi− 1
2
+ qi+ 1

2

2

)
>

(
qi+ 1

2
− qi− 1

2

)2

6
, (69b)

qL ,i+ 1
2

:= 3qi − 2qi+ 1
2

if −
(
qi+ 1

2
− qi− 1

2

)2

6
>

(
qi+ 1

2
− qi− 1

2

)(
qi −

qi+ 1
2
+ qi− 1

2

2

)
. (69c)

The above limiters (65) and (69) are one dimensional and designed to prevent artificial
extrema in the reconstructed values. We introduce in (78) a third limiter 
 , 0 ≤ 
 ≤ 1, a
“flattening parameter,”

qR,i− 1
2

← 
i qR,i− 1
2
+ (1 − 
i )qi , (70a)

qL ,i+ 1
2

← 
i qL ,i+ 1
2
+ (1 − 
i )qi . (70b)

When 
i → 0, qL ,i+ 1
2
= qR,i− 1

2
= qi , and our PPM method reverts to a first-order Godunov

scheme locally. When 
 = 1, no additional limiting takes place.
Now, with properly limited face values one has the limited piecewise parabolic recon-

struction in each cell; i.e.,

qi (x) = qR,i− 1
2
+ � (x)[�qi + q6i (1 − � (x))], (71)

with

� (x) =
x − xi− 1

2

�xi
, xi− 1

2
≤ x ≤ xi+ 1

2
, (72a)

�qi = qL ,i+ 1
2
− qR,i− 1

2
, (72b)

�q6i = 6

[
qi − 1

2

(
qL ,i+ 1

2
+ qR,i− 1

2

)]
. (72c)

This reconstruction (71) has the property that

1

�xi

∫ xi + 1
2 �xi

xi − 1
2 �xi

q(x) = qi . (73)

The three-dimensional limiter 
 used in (70) is computed as follows (see [25]). First, we
construct a dimensionless measure of shock resolution across cell i jk,

�x,i jk = |Pi+1, j,k − Pi−1, j,k |
|Pi+2, j,k − Pi−2, j,k | (74)

(and similarly �y , �z). If � is 1
2 , then pressure is linear across four computational cells. If �

is small enough, then we assume that any discontinuity is already sufficiently well resolved
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that additional dissipation (flattening) is not required. Introducing two parameters, a0 and
a1, we estimate the minimum value of the flattening parameter 
 to be


̃ min
x,i jk = max

(
0, min

(
1,

a1 − �

a1 − a0

))
, (75)

with numerical values a0 = 0.75 and a1 = 0.85 in our examples.
Next, we construct a dimensionless measure of shock strength,

Zx,i jk = |Pi+1, j,k − Pi−1, j,k |
KS,i jk

, (76)

where KS = �c2, with c the speed of sound. For an ideal gas, KS = 	p P . Introducing two
additional parameters, Z0 and Z1, we derive a one-dimensional flattening parameter


̃x,i jk =
{

max
(


̃ min
x,i jk, min

(
1,

Z1−Zx,i jk

Z1−Z0

))
if ux,i+1, j,k < ux,i−1, j,k,

1 otherwise.
(77)

Note that flattening is applied only in convergent flow. Our applications use numerical
values Z0 = 0.25 and Z1 = 0.75.

Finally, we combine these one-dimensional parameters to generate a three-dimensional
limiter:


i jk = min(
̃x,i−1, j,k, 
̃x,i, j,k, 
̃x,i+1, j,k,


̃y,i, j−1,k, 
̃y,i, j,k, 
̃y,i, j+1,k, 
̃z,i, j,k−1, 
̃z,i, j,k, 
̃z,i, j,k+1). (78)

4.2.3. PPM Characteristic Tracing

Let q be a vector of variables; for fluid dynamics we use qT = (� , vx , vy, vz , �E , P , Q),
with � the mass density, v the velocity, E the internal energy per unit mass, P the pressure,
and Q an advected scalar (e.g., a chemical energy). Note that here the components of q
are not strictly primitive variables, as �E is derived by multiplication and P = P(� , E) is
obtained from an equation of state. Linearized, the Euler equations ((1) specialized to fluids,
or (91)) are

∂q

∂t
+ A

∂q

∂x
= s, (79)

with

A =



vx � 0 0 0 0 0
0 vx 0 0 0 1/� 0
0 0 vx 0 0 0 0
0 0 0 vx 0 0 0
0 �E + P 0 0 vx 0 0
0 �c2 0 0 0 vx 0
0 0 0 0 0 0 vx


. (80)

Here, c is the speed of sound. A may be decomposed as A = R�L , with R the matrix of
right eigenvectors (with columns r�), L the matrix of left eigenvectors (with rows l�), and �

the diagonal matrix of eigenvalues (with diagonal elements 
�). Without loss of generality,
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choose the eigenvectors to be orthonormal so that RL = I :

R =



0 0 0 0 1 c−2 c−2

0 0 0 0 0 − 1
�c

1
�c

0 0 0 1 0 0 0
0 0 1 0 0 0 0

0 1 0 0 0 �E + P
�c2

�E + P
�c2

0 0 0 0 0 1 1
1 0 0 0 0 0 0


, (81)

L =



0 0 0 0 0 0 1

0 0 0 0 1 − �E + P
�c2 0

0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 −c−2 0

0 − 1
2 �c 0 0 0 1

2 0

0 1
2 �c 0 0 0 1

2 0


, (82)

� =



vx 0 0 0 0 0 0
0 vx 0 0 0 0 0
0 0 vx 0 0 0 0
0 0 0 vx 0 0 0
0 0 0 0 vx 0 0
0 0 0 0 0 vx − c 0
0 0 0 0 0 0 vx + c


. (83)

A Taylor series expansion using (79) to determine time derivatives from spatial ones
gives the time- and face-centered estimates

q
n+ 1

2

R,i− 1
2

= qn
i − �x

2

dq

dx
− �t

2
A

dq

dx
+ �t

2
sn

i , (84a)

q
n+ 1

2

L ,i+ 1
2

= qn
i + �x

2

dq

dx
− �t

2
A

dq

dx
+ �t

2
sn

i (84b)

to second order. Expanding A in eigenvalues 
�, and eigenvectors r� and l�, we have
equivalently

q
n+ 1

2

R,i− 1
2

= qn
i −

∑
�

l� ·
[

dq

dx

(

�

�t

2
+ �x

2

)]
r� + �t

2
sn

i , (85a)

q
n+ 1

2

L ,i+ 1
2

= qn
i −

∑
�

l� ·
[

dq

dx

(

�

�t

2
− �x

2

)]
r� + �t

2
sn

i , (85b)

from which it is evident that characteristics of any sign are included. The extrapolation is
made upwind by limiting the characteristics in (85) to select those emanating from the cell
center:

q
n+ 1

2

R,i− 1
2

= qn
i −

∑
� such that 
�≤0

l� ·
[

dq

dx

(

�

�t

2
+ �x

2

)]
r� + �t

2
sn

i , (86a)

q
n+ 1

2

L ,i+ 1
2

= qn
i −

∑
� such that 
�≥0

l� ·
[

dq

dx

(

�

�t

2
− �x

2

)]
r� + �t

2
sn

i . (86b)
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These expressions (86) are the characteristic tracing equations used in piecewise linear
schemes, including [25]. To develop the piecewise parabolic tracing equations, note that
one can modify (86) by introduction of reference states q−

R,i− 1
2

and q+
L ,i+ 1

2
,

q
n+ 1

2

R,i− 1
2

= q−
R,i− 1

2
−

∑
� s.t. 
�≤0

l� ·
[

q−
R,i− 1

2
− qn

i + dq

dx

(

�

�t

2
+ �x

2

)]
r� + �t

2
sn

i , (87a)

q
n+ 1

2

L ,i+ 1
2

= q+
L ,i+ 1

2
−

∑
� s.t. 
�≥0

l� ·
[

q+
L ,i+ 1

2
− qn

i + dq

dx

(

�

�t

2
− �x

2

)]
r� + �t

2
sn

i , (87b)

without loss of generality provided the vector q−
R,i− 1

2
− qn

i lies in the vector space {r�} such

that 
� ≤ 0 (and q+
L ,i+ 1

2
− qn

i lies in the vector space {r�} such that 
� ≥ 0).

Now note that appearing in (87a) is the term

qn
i − dq

dx

(

�

�t

2
+ �x

2

)
= q

(
xi− 1

2
− 1

2

��t, tn

)
(88a)

≈ 1

−
��t

x
i− 1

2
−
��t∫

x
i− 1

2

q(x) dx . (88b)

Expressions (88a) and (88b) are interchangeable if the function q(x) appearing in the
integrand is linear, but with the quadratic reconstruction (71) these expressions differ. Now
introducing the approximation (88) into (87) we have the reconstruction formula used in
the PPM method; i.e.,

q
n+ 1

2

R,i− 1
2

= q−
R,i− 1

2
−

∑
� s.t. 
�≤0

l� ·
[
q−

R,i− 1
2
− q�

R,i− 1
2

]
r� + �t

2
sn

i , (89a)

q
n+ 1

2

L ,i+ 1
2

= q+
L ,i+ 1

2
−

∑
� s.t. 
�≥0

l� ·
[
q+

L ,i+ 1
2
− q�

L ,i+ 1
2

]
r� + �t

2
sn

i , (89b)

with

q�
R,i− 1

2
=

 1
−
��t

∫ x
i− 1

2
−
��t

x
i− 1

2
q(x) dx if 
� ≤ 0,

qn
i otherwise,

(90a)

q�
L ,i+ 1

2
=


1


��t

∫ x
i+ 1

2
x

i+ 1
2
−
��t q(x) dx if 
� ≥ 0,

qn
i otherwise.

(90b)

The notation q+
L ,i+ 1

2
means q�

L ,i+ 1
2

with � such that 
� = v + c: the wave of the “+” family.
Likewise, q−

R,i− 1
2

corresponds to the wave of the “−” family, 
 = v − c.
Note that according to the definitions (90), we do not necessarily satisfy the condition that

q−
R,i− 1

2
− qn

i be expressible in right eigenvalues {r�} s.t. 
� ≤ 0, etc. Therefore, the choice
of reference state does matter: (89) with a linear reconstruction q(x) is not equivalent to
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(86) because of the reference states. The rationale for choosing the fastest wave of the given
direction as a reference state is that this choice minimizes (approximately) the size of the
terms subject to characteristic limiting [10, p. 181].

In uniform flow with �t = �x/
, and assuming a quadratic reconstruction q(x), the
PPM discretization gives the correct result that all mass in the cell will be swept out in
time �t . For this example the truncation error of discretization (86) is O(�x2), while that
for (89) is O(�x2 − (
�t)2) + O(�x3, �t3) (which is superior to O(�x2), notably in the
limit �t = �x/
). Employing a piecewise linear reconstruction q(x) in conjunction with
discretization (86) also gives second-order results: O(3(�x − 
�t)2) + O(�x3, �t3) for
the example described above.

5. SOLID–FLUID COUPLING

5.1. Governing Equations

Specialized to compressible inviscid fluid dynamics the system of PDEs (1) is the Euler
equations; i.e.,

∂

∂t


�

�v

� E

� Q

 + ∂

∂x�


�v�

�vv� + Pe�

� Ev� + Pv�

� Qv�

 =


0

� f

� (� + v · f )

� Q̇

, (91)

where � is the mass density, v the velocity vector, E the total energy, P the pressure, and Q an
advected scalar. In the present application, Q is the chemical potential energy, and E is then

E = Emechanical + Ekinetic + Echemical

(92)
= E(� , S) + 1

2
v · v + Q,

where E(� , S) is specified by an equation of state model (S is the specific entropy). We
include for generality a heat source�, and body force term f (e.g., gravitational acceleration).
e� refers to column � of the identity matrix.

For solid mechanics, the governing equations (1) become [25]

∂

∂t



�

�v

� E
gex

gey

gez

�F pex

�F pey

�F pez

��


+ ∂

∂x�



�v�

�vv� − �e�

� Ev� − v����

gv�x�

gv�y�

gv�z�

�F pexv�

�F peyv�

�F pezv�

��v�



=



0
� f

� (� + v · f )

(v × (∇ × gT ))T ex

(v × (∇ × gT ))T ey

(v × (∇ × gT ))T ez

�hex

�hey

�hez

� K



. (93)

Here, g is the inverse total deformation tensor relating a reference material coordinate frame
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{a} to the current spatial frame {x}:

g�� = ∂a�

∂x�
. (94)

g is subject to two constraints. First, as a gradient it is subject to the equality of mixed
partial derivatives, which we write as

∇ × gT = 0. (95)

Second, the determinant of g relates the material density � to the material density �0 in the
reference frame {a}:

�̃ ≡ �0det(g), (96a)

� = �̃ . (96b)

These constraints are obeyed by the PDE (93) in the sense that if true in the initial condition,
they will remain true for all time. Numerically, however, differences arise that must be
addressed in the solution of (93).
F p is the plastic deformation tensor, which relates a hypothetical stress-free reference

frame {b} to the material reference frame {a},

F p
�� = ∂b�

∂a�
. (97)

Associated with F p is the plastic deformation source tensor h (93). We assume the multi-
plicative decomposition [23]

F = F eF p, (98)

whereF = g−1 is the total deformation andF e is the elastic deformation tensor. We assume
that det(F p) = 1: plastic deformation is volume preserving. As with the fluid we define

E = Emechanical + Ekinetic

(99)
= E(Ce, �, S) + 1

2
v · v,

with the internal energy a function of the elastic Green tensor

Ce = F eTF e = (F pg)−T (F pg)−1, (100)

entropy S, and a scalar constitutive parameter �, the work hardening parameter, with source
K (93).

In (93) � is the stress tensor, derived as a thermodynamic derivative of the internal energy
function E ; i.e.,

��� = −�
∂E

∂g	�
g	�, (101)
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where E (99) is a function of the inverse deformation g =F−1 through Ce (100) by way of
the decomposition (98). Stress � and fluid pressure P are related by P = − 1

3 tr(�), and the
stress tensor of a fluid is given by � = −P I , with I the identity matrix.

Note that Eq. (93) is not strictly in conservation form since the terms v × (∇ × gT )T

contain gradients. However, to the extent that the constraint ∇ × gT = 0 is obeyed, these
terms are negligible and we will treat (93) as though it were a system of conservation laws.

5.2. Constitutive Models

To ensure thermodynamic self-consistency, we formulate our material models using an
entropy-dependent internal energy function (a so-called “fundamental equation” [8]). Tem-
perature, stress (pressure), and other intensive state variables are determined from the energy
function by taking appropriate thermodynamic derivatives. Two such material models will
be described here. The first is an ideal gas—a familiar model recast as a fundamental equa-
tion. The second is an elastically isotropic compressible solid. This model’s complexity is
largely inherent: there are a large number of internal variables and a correspondingly large
number of experimental observations that must be adequately reproduced. The resulting
material model is in essence little different from the commonly used Mooney–Rivlin model
(a two-parameter model for rubber elasticity [28, 38]) but is more realistic for crystalline
solids under large compression.

5.2.1. Reacting Gas

In energy function form E(� , S), the fundamental equation for an ideal gas is given by

E(� , S) = E0

[
�

�0
exp

(
S − S0

R

)](	p−1)

, (102)

where R is the gas constant and 	p is the polytropic gas index, equal to the ratio of specific
heats 	p = CP/CV > 1. E0, S0, and �0 are state points in some thermodynamic reference
state; E0 = E(�0, S0).

The pressure P is given by

P = �2 ∂E
∂�

∣∣∣∣
s

= (	p − 1)E� , (103)

and the temperature T is given by

T = ∂E
∂S

∣∣∣∣
�

= E
CV

, (104)

where CV is the constant volume specific heat of an ideal gas:

CV = R

	p − 1
. (105)

We augment this thermodynamic model with a very simple model for chemical reaction
kinetics. We assume that no reaction occurs when the temperature is below some threshold
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TR , and that the rate is constant otherwise:

Q̇ =
{

Q̇0 if T ≥ TR,

0 if T < TR .
(106)

Note that this reaction model only has the effect of transferring chemical potential energy
Q to internal energy E : there is no change in mole number.

5.2.2. Elastically Isotropic Solid

We base our fundamental equation of an elastically isotropic solid on a so-called “uni-
versal equation of state” model for hydrostatic compression. This model was originally
proposed as a scaling relation for the binding energy of metals [39] and has since been
found to apply to a wide variety of different chemical interactions. Applications to the
hydrostatic equation of state of solids are described in [44, 45].

We assume a separation of the total internal energy as

E(Ce, �, S) = Eh(I3) + Et (I3, S) + Es(I1, I2, I3) + Ew(�), (107)

where Eh describes the isentropic, hydrostatic compressional energy, Et is the thermal
energy associated with changing entropy at constant volume, Es is the energy associated
with isochoric shearing, and Ew is the energy term associated with work hardening. In (107)
I1, I2, and I3 are the isotropic invariants of the elastic Green tensor Ce:

I1(Ce) = tr(Ce), (108a)

I2(Ce) = 1

2

[
(trCe)2 − tr(Ce)2

]
, (108b)

I3(Ce) = det(Ce) =
(

�0

�

)2

. (108c)

The hydrostatic energy is given by the universal equation of state, fit to the zero pressure
isentropic bulk modulus K0S and to the isentropic pressure derivative of the isentropic bulk
modulus at zero pressure, K ′

0s ; i.e.,

Eh(I3) = − 4K0s

�0(K ′
0s − 1)2

(1 + rK )e−rK , (109)

with

rK = 3(K ′
0s − 1)

2

[(
�0

�

)1/3

− 1

]
, (110)

and where the density � is understood to depend on I3 through (108c). �0 is the density at
zero pressure.
Et (I3, S) is the thermal part, modeled on a Mie–Grüneisen form,

Et (I3, S) = CV T0

(
exp

[
S − S0

CV

]
− 1

)
exp

[
	0 − 	 (I3)

q

]
, (111)
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where CV is a constant heat capacity, S0 and T0 are the entropy and temperature in the refer-
ence configuration (at zero pressure and density �0), and where 	 (I3) is the thermodynamic
Grüneisen parameter given by the model equation

	 = 	0

(
�0

�

)q

, (112)

where 	0 and q �= 0 are constants. Again, in (112) � is determined from I3 via (108c).
The energy change due to shearing motion at constant volume is given by

Es(I1, I2, I3) = G(� )

2�

[
� I1 I −1/3

3 + (1 − �)I2 I −2/3
3 − 3

]
. (113)

The function G(� ) is the shear modulus, also constructed to follow the universal equation
of state formalism, and fit to the zero pressure shear modulus G0 and the pressure derivative
of the shear modulus also evaluated at zero pressure, G ′

0:

G(� ) = G0

[
(1 − rG)

(
�

�0

)1/3

− 4

3
rG

(
K0S

G0
G ′

0 − 1

)−1( �

�0

)2/3
]

e−rG (114)

rG = 3

2

[
K0S

G0
G ′

0 − 1

][(
�0

�

)1/3

− 1

]
. (115)

Note that on the hydrostat of an elastically isotropic solid I1 = 3I 1/3
3 and I2 = 3I 2/3

3 , and so
Es → 0. In (113) the parameter �, 0 ≤ � ≤ 1, is an adjustable parameter chosen to control
the symmetry of the shear potential away from the hydrostat (see [28]).

The work hardening potential Ew(I3, �) is given by

Ew(�) = �0

�0

(
� + 1

�1
[e−�1� − 1]

)
. (116)

This equation gives a work hardening modulus with units of pressure,

�(�) = �
∂E
∂�

= �0
�

�0
(1 − e−�1� ), (117)

in terms of two parameters: �0(�/�0) is the ultimate, asymptotic value of the work hardening
modulus, and �1 dictates the rate of approach of the asymptotic limit.

Our plastic flow model is a simple isotropic rate-independent-associated model based on
the yield surface

f (�, �) =
√

3

2
‖dev�‖ −

(
�Y + �0

�
�

)
, (118)

where dev(�) = � − 1
3 (tr�)I is the stress deviator and ‖A‖ is the Schur norm of A,
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‖A‖2 = A�� A�� = tr(AT A).
√

3
2‖dev�‖ is sometimes called J2, or the second invariant

of the stress deviator.
Associated with this yield surface are the rate laws [25, 36]; i.e.,

Ḟ p = �F pg
dev(�)

‖dev(�)‖F, (119a)

�̇ = �

√
2

3

�0

�
, (119b)

with � a (Lagrange undetermined) parameter chosen to satisfy the Kuhn–Tucker conditions
and the “consistency condition” [41]:

f = 0

� ≥ 0

ḟ = 0

 plastic flow. (120)

The work hardening energy (116), yield surface description (118), and resulting flow
laws (119) differ from the model used in [25] by better separating plastic work from elastic
strain energy. In the current formulation, the elastic response of the solid is not affected by
its plastic strain history.

AlthoughE is presented formally as a fundamental equation depending on specific entropy
S, S and its reference value S0 need never be specified. Instead, one could use (102) to
determine S − S0 = �S(� , E), etc. In the solid case one could determine

Et = E − Eh(I3) − Es(I1, I2, I3) − Ew(�) (121)

and thereby obtain the temperature

T = ∂E
∂S

∣∣∣∣
Ce,�

= Et

CV
+ T0 exp

[
	0 − 	

q

]
. (122)

The reference temperature T0, and the heat capacity CV are not required to solve the dynam-
ical equations except in so far as the temperature itself is required by constitutive models,
e.g., because of a temperature-dependent yield strength. The Grüneisen parameter 	0 and
its constitutive parameter q are necessary, however, to determine the thermal stress arising
from the volume dependence of Et .

5.3. Interface Riemann Problems

At a point on the two-material interface, we may have “left” and “right” states with
different velocities and stresses. Let us approximate the left and right states as being constant.
This, then, is the canonical Riemann problem: an initial value problem consisting of two
piecewise constant states in juxtaposition. The solution to this problem is a set of waves
(three in each solid, one in each fluid), with amplitudes chosen to satisfy appropriate interface
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compatibility conditions. In this solution, we denote by superscript “*” the state on the
material interface.

The methods described here are the main part of our overall method that bring together the
different physics of the fluid (91) and solids (93). The other part concerns volume fraction
normalization.

5.3.1. Posing an Interface-Normal Problem

We wish to pose a one-dimensional Riemann problem, with one material on the left
and another on the right. In general, the interface is not oriented with the computational
grid. Therefore, we need to rotate our state vectors, and transform state tensors, from
the current spatial system (�x, �y, �z) into a new right-handed orthogonal coordinate system
(�n, �� , ��), where �n is the interface normal and �� and �� are interface tangential directions. �n
is computed as part of our interface reconstruction method, described above. �� and �� are
orthogonal to �n but are otherwise arbitrary. Here we describe our particular choices for ��
and ��, and their use in transforming the state variables.

One choice of tangents is

� = 1√
2(1 − nx ny − nx nz − nynz)

 (ny − nz)

(nz − nx )

(nx − ny)

 (123a)

and

� = 1√
2(1 − nx ny − nx nz − nynz)


(
nx (ny + nz) − n2

y − n2
z

)
(
ny(nx + nz) − n2

x − n2
z

)(
nz(nx + ny) − n2

x − n2
y

)
. (123b)

This choice fails in particular when nx = ny = nz = ±1/
√

3, and so we use it only when
|ny + nz| ≤ |ny − nz|. When |ny + nz| > |ny − nz| we use instead

� = 1√
2(1 + nz(ny − nx ) + nx ny)

 (ny + nz)

(nz − nx )

−(nx + ny)

 (124a)

and

� = 1√
2(1 + nz(ny − nx ) + nx ny)


(
nx (nz − ny) − n2

y − n2
z

)(
ny(nx + nz) + n2

x + n2
z

)(
nz(nx − ny) − n2

x − n2
y

)
. (124b)

(which fails in particular when nx = −ny = nz = ±1/
√

3).
Given a new orthonormal basis (�n, �� , ��) we construct the rotation matrix R,

R =

 nT

� T

�T

, (125)
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with which rotated material properties are derived by straightforward vector and tensor ma-
nipulations [31]. For example, the primitive variables characterizing a solid are transformed
as follows: 

�

E
v
g

F p

�



rotated

=



�

E
R · v

R · g · RT

R · F p · RT

�


. (126)

The transformation of fluid-phase primitive variables are contained as a subset of (126)
(scalar Q transforms like scalar �).

5.3.2. Conditions of Compatibility

The compatibility conditions are constraints linking the state variables on one side of a
material interface to those on the opposite side. Physically, these conditions describe conti-
nuity of normal velocity, normal stress, and shear traction. Mathematically, these conditions
describe the Riemann invariants of the contact discontinuities (genuinely nonlinear waves
propagating at the material velocity). Here we will describe the compatibility conditions for
a number of two-material interfaces. In Section 5.3.3 we describe in more detail how these
conditions are employed to solve a two-material Riemann problem. We distinguish several
special cases characterized by different material pairs, or different idealized assumptions
regarding shear tractions.

• Solid–vacuum: A solid in contact with vacuum has no normal stress and no shear
stresses on the contact surface. Thus, the solution of the Riemann problem is characterized
by the compatibility conditions

�∗S
nn = 0,

�∗S
n� = 0, (127)

�∗S
n� = 0.

• Fluid–vacuum: A fluid in contact with vacuum has no pressure, therefore

P∗F = 0. (128)

• Solid–fluid: The normal stress is continuous across the contact, as is the normal ve-
locity. For an ideal inviscid fluid there are no shear stresses on the contact surface; i.e.,

v∗S
n = v∗F

n ,

�∗S
nn = −P∗F ,

(129)
�∗S

n� = 0,

�∗S
n� = 0.
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• Fluid–fluid: The two-fluid condition is equality of normal stress and of normal velocity;
i.e.,

v∗F1
n = v∗F2

n ,
(130)

P∗F1 = P∗F2 .

• “Slip” solid–solid: When two solids are in contact, the normal velocity and normal
stress are continuous. If the contact is frictionless, then there are no shear stresses and
tangential velocities may jump discontinuously; i.e.,

v∗S1
n = v∗S2

n ,

�∗S1
nn = �∗S2

nn ,

�∗S1
n� = 0,

(131)
�∗S2

n� = 0,

�∗S1
n� = 0,

�∗S2
n� = 0.

This is the “slip” solid–solid boundary condition.
• “Stick” solid–solid: Another idealized limit is the “stick” solid–solid boundary condi-

tion. This case is analogous to the solid–solid Riemann problem posed within any single-
material region. In this case, all components of velocity are continuous, as are normal stress
and in-plane shear stresses; i.e.,

v∗S1
n = v∗S2

n ,

v∗S1
� = v∗S2

� ,

v∗S1
� = v∗S2

� ,
(132)

�∗S1
nn = �∗S2

nn ,

�∗S1
n� = �∗S2

n� ,

�∗S1
n� = �∗S2

n� .

Other model compatibility conditions may be used. For example, when modeling gas flow
with irregular internal boundaries it is convenient to assume incompressible rigid walls. As
these boundaries are stationary, the compatibility condition becomes vn = 0 [32].

For each solid phase, the Riemann solution will involve three waves. For each fluid phase,
the Riemann solution will involve a single wave. Each interface compatibility condition
provides sufficient constraints to determine the requisite number of waves. For example, a
solid–solid interface Riemann solution will consist of six total waves and six constraints
are provided by each of (131) and (132). Solid–fluid interface solutions will involve four
waves: three in the solid and one in the fluid; (129) gives the four constraints needed.

5.3.3. Solution of the Solid–Fluid Riemann Problem

In detail, the solution of each interface special case is constructed differently. Here we
illustrate the general approach by describing the particular case of a solid in contact with a
fluid.
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The one-dimensional two-material Riemann problems are solved approximately, using
rarefaction shock approximations [12, 26]. Use of this approximation is justified by the
observation that the rarefaction wave curves and the corresponding shock Hugoniot are C2,
and so the error in treating a rarefaction as a shock is third order, thus negligible in a numerical
scheme whose overall order of accuracy is 2 or less. As rarefaction wave fans expand, the
magnitude of the “rarefaction jumps” will diminish, and the solution will therefore converge
to the proper result as the waves becomes resolved across several computational cells.

As in [25] our approach to the solid Riemann problem begins with the linearized one-
dimensional equation of motion

∂q

∂t
+ A

∂q

∂xn
= s (133)

in terms of the primitive variables qT = (� , v, E, gen, ge� , ge�,F pen,F pe� ,F pe�, �, �en).
The matrix A is given by

A =



vn �eT
n 0 0 0 0 0 0 0 0 0

0 vn I 0 0 0 0 0 0 0 0 −I/�

0 −(�en)T /� vn 0 0 0 0 0 0 0 0

0 g�nn 0 vn I 0 0 0 0 0 0 0

0 g��n 0 0 vn I 0 0 0 0 0 0

0 g��n 0 0 0 vn I 0 0 0 0 0

0 0 0 0 0 0 vn I 0 0 0 0

0 0 0 0 0 0 0 vn I 0 0 0

0 0 0 0 0 0 0 0 vn I 0 0

0 0 0 0 0 0 0 0 0 vn 0

0 −Ann 0 0 0 0 0 0 0 0 vn I



, (134)

where

A�� = −∂�e�

∂ge�
g, (135)

and where Ann is the acoustic tensor for waves propagating in the normal (n) direction.
The vector s contains source terms,

sT = (0, f, �, 0, 0, 0, hen, he� , heω, K , bn), (136)

with

bn = ∂�en

∂F p
: h + ∂�en

∂�
K + ∂�en

∂E �. (137)
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The right eigenvectors of A, X, are

X =



1 0 0 0 0 0 0 0 0 −�eT
n Xac −�eT

n Xac

0 0 0 0 0 0 0 0 0 Xac�ac −Xac�ac

0 1 0 0 0 0 0 0 0 (�en)T Xac/� (�en)T Xac/�

0 0 I 0 0 0 0 0 0 −gXac −gXac

0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 Xac�
2
ac� Xac�

2
ac�



, (138)

where Xac are the right eigenvectors of the acoustic wave propagation equation

Ann Xac = � Xac�
2
ac. (139)

The columns of the 27 × 27 matrix X are ordered such that the first 21 are associated with
waves of the “0” family (with characteristic speed given by eigenvalue 
 = vn). Columns
22–24 are associated with waves of the “−” family (
 = vn − 
ac), and columns 25–27 are
associated with waves of the “+” family (
 = vn + 
ac).

Now, following the approach of [42] we determine the state q∗ of the solid at the material
interface by expanding the waves in the eigenvectors X . Let us assume that in our rotated
coordinate frame the solid is to the left of the fluid. We would then solve for q∗ using the
three waves of the “−” family, using in this case eigenvectors 22, 23, and 24:

q∗ = q + �t

2
s +

24∑
�=22

c� X�. (140)

From (140) with compatibility condition (129) we have c22

c23

c24

 = 1

�
�−2

ac X−1
ac

−P∗ − �nn

−�n�

−�n�

. (141)

Also, the normal velocity is determined by (140) and (129):

v∗
n = vS

n + Xac�ac

 c22

c23

c24

 = vS
n + 1

�
Xac�

−1
ac X−1

ac

−P∗ − �nn

−�n�

−�n�

. (142)

This equation (142) is one equation coupling the interface velocity v∗
n to the interface

pressure P∗.
A second equation relating these variables is obtained by consideration of the fluid jump

conditions. Following [12], we write the Rankine–Hugoniot equations for the fluid as

|v∗
n − vn| = ±|P∗ − P|

W
,

|P∗ − P|
W 2

= −|�∗−1 − �−1|, (143)

|E∗ − E | = 1

2
(P∗ + P)|�∗−1 − �−1|,
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where W is the mass flux through the (shock) wave connecting the initial state and the final
“*” state. In the present case, where we assume that the fluid lies to the right of the interface,
we take the + sign in (143). Recall that the variables E∗, P∗, and �∗ are connected through
the equation of state.

Equations (143) determine a one-parameter (W ) monotonic relation between v∗
n and P∗.

If the solid–fluid interface Riemann problem has a physical solution that does not require
cavitation, then the P∗(v∗

n ) curve specified by (143) intersects the linear relation given by
(142) exactly once. We compute this intersection using an iterative approach.

• We begin by estimating an interface velocity

v∗(0)
n = 1

2

(
vS

n + vF
n

)
. (144)

• For each step m of our iterative solution, an estimate P∗(m) of the interface pressure is
obtained from the input velocity v∗(m−1) by solving (143). This step itself is iterative, using
the secant method approach described in [12]:

P∗(m)←−
W (m)

v∗(m−1)
n . (145)

• (142) provides a function

�V = v∗(P∗(m))︸ ︷︷ ︸
from (142)

− v∗(m−1) (146)

whose zero v∗(m) we estimate with a Newton iteration,

v∗(m) = v∗(m−1) − �V
d�V

dv

, (147)

with

d�V

dv
= −

(
1

�

3∑
�=1

Xac,1�
−1
ac,� X−1

ac,�1

)
solid

d P∗

dv∗

∣∣∣∣
fluid

− 1. (148)

• The iteration is stopped when the change |v∗(m)
n − v∗(m−1)

n | is small enough, say 0.1%
of the fluid sound speed.

On convergence, the “*” state of the solid and fluid states are readily determined from
(140) and (143).

In our present implementation, we take as the left state the cell-centered properties of the
solid at time tn , augmented by one half time step, 1

2�tn , of the source term (136). Similarly,
we take as the right state the cell-centered properties of the fluid at time tn , augmented by
one half time step of the fluid source term (including chemical reaction). The centering
of this solution is thus only O(h) with respect to the space–time centroid of the interface
during time step �tn . This centering, and its overall impact on the solution accuracy, is
discussed further in Section 6.

5.3.4. The Interface Velocity and Flux

For each material (left and right) we transform the “*” Riemann solution state back to the
coordinate frame of our solution grid. This makes use of the same transformation matrix R
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(125) used to transform into the interface normal direction (126):

�∗

E∗

v∗

g∗

F p∗

�∗


=



�∗

E∗

RT · v∗

RT · g∗ · R

RT ·F p∗ · R

�∗



rotated

. (149)

Note that in the rotated frame v∗
Ln = v∗

Rn as a consequence of the compatibility conditions,
but the tangential components will differ in general. However, in general the grid-oriented
velocities given by (149) will differ entirely.

We additionally wish to rotate the vector of stresses acting on the interface,

(�∗
nx �∗

ny�∗
nz) = (�∗

nn�∗
n� �∗

n�) · R. (150)

Unlike the velocities, these stress components are single valued at the interface.
Now, given the Riemann solutions “*” for each material we may compute the flux vector

(the generalization of F�(U ∗) in (1) to direction � = n). Written for a solid,

F B =



� (vn − vs)

�vx (vn − vs) − �nx

�vy(vn − vs) − �ny

�vz(vn − vs) − �nz

� E(vn − vs) − �nxvx − �nyvy − �nzvz

nx (g11vx + g12vy + g13vz) − vs g11

nx (g21vx + g22vy + g23vz) − vs g21

nx (g31vx + g32vy + g33vz) − vs g31

ny(g11vx + g12vy + g13vz) − vs g12

ny(g21vx + g22vy + g23vz) − vs g22

ny(g31vx + g32vy + g33vz) − vs g32

nz(g11vx + g12vy + g13vz) − vs g13

nz(g21vx + g22vy + g23vz) − vs g23

nz(g31vx + g32vy + g33vz) − vs g33

�F p
11(vn − vs)

�F p
21(vn − vs)

�F p
31(vn − vs)

�F p
12(vn − vs)

�F p
22(vn − vs)

�F p
32(vn − vs)

�F p
13(vn − vs)

�F p
23(vn − vs)

�F p
33(vn − vs)

��(vn − vs)


︸ ︷︷ ︸

general case

∗

→



0
−�nx

−�ny

−�nz

−�nxvx − �nyvy − �nzvz

nx (g11vx + g12vy + g13vz) − vn g11

nx (g21vx + g22vy + g23vz) − vn g21

nx (g31vx + g32vy + g33vz) − vn g31

ny(g11vx + g12vy + g13vz) − vn g12

ny(g21vx + g22vy + g23vz) − vn g22

ny(g31vx + g32vy + g33vz) − vn g32

nz(g11vx + g12vy + g13vz) − vn g13

nz(g21vx + g22vy + g23vz) − vn g23

nz(g31vx + g32vy + g33vz) − vn g33

0
0
0
0
0
0
0
0
0
0



∗

︸ ︷︷ ︸
material interface: vs = v∗

n

(151)



64 MILLER AND COLELLA

In writing (151) we distinguished between the material velocity at the interface v∗
n and

the velocity of the interface itself vs . In our present application, where we are concerned
with material interfaces (which move with the material velocity), vs = v∗

n , resulting in
considerable simplification. The more complete form is important if vs �= v∗

n , as when the
interface in question is a detonation wave or a shock wave.

The evolution of the material domain ��(t) is governed by a volume fraction advection
equation (23a) that requires an interface velocity field v defined in the neighborhood of the
interface ��� . Away from the interface an estimate of the interface velocity field may be
taken from the material velocity field,

vinterface = vmaterial. (152)

At material interfaces, the two-material Riemann problem provides a unique interface-
normal velocity. The components of velocity tangential to the interface are not given by
the two-material Riemann problem when slip interfaces are allowed (as done here). In that
case, the tangential components of the material velocities on either side of the interface
are averaged with density weighting. We use the material densities and material velocities
obtained as solutions to interface-normal Riemann problems,

 vn

v�

v�

interface

=


v∗

n

�∗
Sv∗S

� +�∗F v∗F
�

�∗S+�∗F

�∗Sv∗S
� +�∗F v∗F

�

�∗S+�∗F

, (153a)

 vx

vy

vz

interface

= RT ·
 vn

v�

v�

interface

. (153b)

In summary, for solid–fluid interfaces we construct a velocity field in the neighborhood of
the material interface using results from the interface Riemann problem (153), augmented
away from the material interface by the actual material velocity (152). For other intrfaces this
procedure may not be appropriate. For example, in applying these methods to nonmaterial
interfaces (e.g., a detonation [33]) the material velocity has no relation to the detonation front
velocity. In this case, one should instead extend the velocity determined at the interfaces
itself (153) to cells adjacent to the interface [4, 33]. Even when tracking material interfaces,
the approach described above may be inappropriate, for example a solid–vacuum or fluid–
vacuum interface. Then, the approach described above fails for want of a vacuum material
velocity. In this case, too, velocity extension ideas work well. The algorithms we use to
extend interface velocity are described in Section 4.1.

5.3.5. Moduli of Incompressibility

The volume fraction evolution equations (23a) introduce a modulus of incompressibility.
According to the derivation in [26] this modulus acts to normalize �� such that

∑
� �� = 1,

while maintaining equality of pressure at the interface. For fluids, then, M is isentropic bulk
modulus KS . For solids, and solid–fluid mixtures, equality of normal stress, not equality
of pressure, is the correct generalization. However, in this implementation we use the bulk
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modulus. For the fluid phase,

M F := KS = ∂ P

∂ ln �

∣∣∣∣
S

. (154)

For the solid phase,

M S := KS = se11 + se22 + se33 + 2(se12 + se23 + se31), (155)

where se is the elastic compliance tensor, here indexed in Voigt notation. se is the inverse of
the Eulerian elastic constant tensor ce centered at the current state, which may be written
in terms of components of the acoustic propagation tensors A (135):

ce =



(Axx )xx (Axy)xy (Axz)xz (Axy)xz (Axx )xz (Axx )xy

(Ayx )yx (Ayy)yy (Ayz)yz (Ayy)yz (Ayx )yz (Ayx )yy

(Azx )zx (Azy)zy (Azz)zz (Azy)zz (Azx )zz (Azx )zy

(Ayx )zx (Ayy)zy (Ayz)zz (Ayy)zz (Ayx )zz (Ayx )zy

(Axx )zx (Axy)zy (Axz)zz (Axy)zz (Axx )zz (Axx )zy

(Axx )yx (Axy)yy (Axz)yz (Axy)yz (Axx )yz (Axx )yy


. (156)

5.4 Examples

We demonstrate our method with one- and three-dimensional examples using three
material phases. The parameters for our elastic-plastic solid were chosen to approximate
the response of oxygen-free annealed copper. Our fluid is a crude approximation to the
explosive PBX 9404 modeled as an ideal gas with realistic heat of reaction and initial unre-
acted solid density. The equation-of-state parameters for these materials are given in Table I.
Equation of state and reaction energy Q for PBX 9404 are taken from [18]. The rate Q̇ is
estimated to give a reaction zone spread over a few computational cells. Elastic equation-
of-state parameters for copper come from [1] except for G ′

0, which is approximated from
the scaling relation G ′/K ′ ≈ (G/K )2 [2], and CV , which is set to 3R per mol of atoms.
�, q , and the plastic constitutive parameters for copper are estimated.

In single-level computations (those not using adaptive mesh refinement) the global time
step is chosen to maintain the maximum Courant–Friedrichs–Lewy number near a pre-
scribed value. The CFL number for a single phase � is calculated as the maximum over
occupied cells of �t(|vx | + max(c�))/�x , without modification for fractional occupancy
(�� �= 1). The CFL number for fractionally occupied cells is the maximum over phases
of the single-phase CFL numbers. In multilevel (AMR) computations we do employ time
subcycling; thus a 2× refined grid is solved with half the time step of its coarser parent.
The CFL numbers are computed at all levels of refinement, and the largest is used to reset
the time step at the beginning of a coarse cycle.

By this strategy, the material with the fastest wave speeds controls the overall time step.
This will lead to low computational efficiency when the wave speeds of different materials
differ dramatically. However, in the cylinder test problem (Section 5.4.2) this does not occur.
During the initial combustion phase the explosive controls the CFL number; afterward, as
the cylinder inflates, the solid liner controls the CFL number. Throughout the computation,
the maximum CFL number of the solid and that of the fluid agree to within approximately
25%.
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TABLE I

EOS Parameters Used in Examples

Parameter Value Units

Reacting gas (Section 5.2.1)
E0 2.938 × 10−5 [kJ/g]
�0 1.84 [g/cc]
	p 2.85 [ ]
Q0 100 [kJ/g · s]
TR 2000 [K]
MW 25 [g/mol]

Elastically isotropic solid (Section 5.2.2)
�0 8.93 [g/cc]
K0S 138 [GPa]
K ′

0S 4.96 [ ]
G0 46.9 [GPa]
G ′

0 0.57 [ ]
� 0 [ ]
T0 300 [K]
CV 3.9 × 10−4 [kJ/g · K]
	0 1.96 [ ]
q 1 [ ]
�Y 0.23 [GPa]
�0 0.12 [GPa]
�1 1 [ ]

5.4.1. One-Dimensional Riemann Problems

To demonstrate the ability of this method to correctly model simple wave interactions,
we present computational examples of various one-dimensional Riemann problems.

Figures 10–12 display the results of a one-dimensional solid–fluid shock–shock Riemann
problem using the initial values given in Table II. The interface was at coordinate x = 50 mm

TABLE II

Initial Values for Solid–Fluid Riemann

Problem

Parameter Value Units

Reacting gas
Q 5.543 [kJ/g]
� 1.84 [g/cc]
E 2.938 × 10−5 [kJ/g]
v 0 [km/s]

Elastically isotropic solid
� �0 [g/cc]
E Such that Et = 0 [kJ/g]

g (�/�0)
1
3 I [ ]

F p I [ ]
� 0 [ ]
v 2 [km/s]
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FIG. 10. Stress for one-dimensional solid–fluid Riemann problem.

initially. Results are plotted at t = 10 �s using 100, 200, and 400 mesh points and CFL =
0.7. In the fluid phase, the shock is captured in about four computational cells without
ringing or overshoot. In the solid an elastic precursor shock is seen, followed by a slower
plastic shock. These discontinuities are captured in approximately eight cells with modest
overshoot. This behavior was also observed in [25]. We suspect that the broader solid shock
zone and the overshoot are artifacts of the linearized solid Riemann solver we employ for
solid mechanics.

Figures 13–15 display the results of a one-dimensional solid–vacuum rarefaction
Riemann problem using the equation of state parameters given in Table I and the initial

FIG. 11. Velocity for one-dimensional solid–fluid Riemann problem.
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FIG. 12. Density for one-dimensional solid–fluid Riemann problem.

values given in Table III. The interface was at coordinate x = 80 mm initially. Results are
plotted at t = 10 �s using 200, 400, and 800 mesh points and CFL = 0.7. A weak elastic
rarefaction precedes the larger amplitude plastic rarefaction fan.

In smooth flow, our solid and fluid solvers give second-order convergence. For these
test problems involving discontinuities, the convergence results are given in Table IV. O(1)
entropy errors occur at the material interfaces: a so-called “wall heating” effect. This entropy
error accounts for the apparent density deficit in the gas phase seen in Fig. 12. A discussion
of the order of convergence is given in Section 6.

FIG. 13. Stress for one-dimensional solid–vacuum Riemann problem.
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FIG. 14. Velocity for one-dimensional solid–vacuum Riemann problem.

5.4.2. Cylinder Test with AMR

This example is a highly idealized model of a cylinder test: an experiment in which an
explosive is detonated inside a cylindrical metal tube for the purpose of measuring detonation
velocity. Wilkins [46] included this example in his description of a Lagrangian multiphase
technique. Other Lagrangian techniques are described in [18]. The nominal initial values
are given in Table V. The reaction was initiated by creating a disk-shaped region at one
end of the fluid cylinder, where the initial chemical energy Q0 was completely converted
to internal energy: E0 := E0 + Q0; Q0 := 0. Surrounding the solid is vacuum.

FIG. 15. Density for one-dimensional solid–vacuum Riemann problem.
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TABLE III

Initial Values for Solid-Vacuum Riemann Problem

Parameter Value Units

Elastically isotropic solid
� 1.053�0 [g/cc]
E Such that Et = 0 [kJ/g]

g (�/�0)
1
3 I [ ]

F p I [ ]
� 0 [ ]
v 0 [km/s]

TABLE IV

Order of Convergence

Solid–fluid Solid-vacuum

Field L1 L∞ L1 L∞

� 1.64 1.00 1.09 1.89
vx 1.82 0.63 0.76 0.60
�11 1.33 0.33 0.77 0.68

TABLE V

Initial Values for Contained Explosion Problem

Parameter Value Units

Reacting gas
Q 5.543 [kJ/g]
� 1.84 [g/cc]
E 2.938 × 10−5 [kJ/g]
v 0 [km/s]

Elastically isotropic solid
� �0 [g/cc]
E Such that Et = 0 [kJ/g]
g I [ ]
F p I [ ]
� 0 [ ]
v 0 [km/s]
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Initially, the metal can has length 24.6 (say cm) and outside radius of 14.0, with a wall
thickness of 2.0. The inside corners are given a chamfer of approximate size 0.6 × 0.6. The
coarse base mesh is 112 × 64 × 64 with 0.3 units of length per coarse cell.

Adaptive mesh refinement was employed to resolve at 2× resolution the material inter-
face, the solid, and those parts of the fluid containing gradients. At small times, the unreacted
fluid is represented only on a coarse grid except for those parts adjacent to the interface.
As the reaction proceeds, the resolved mesh grows to encompass the entire solid and fluid
regime. Coarse regions persist outside the solid where only vacuum is present.

Results are displayed in Figs. 16–18. We show each computational cell containing solid
or fluid, with color corresponding to pressure (scales vary). As in Fig. 5, fractionally oc-
cupied cells are shown truncated by a piecewise planar interface. The geometry pictured
corresponds directly to the internal representation of our method.

In Fig. 16 the detonation wave has traversed approximately half the cylinder length.
Ahead of the detonation wave a zone remains that is not adaptively refined, but behind
the detonation all fluid and solid regions are refined. Solid and fluid pressure need not be
continuous (normal stress is), but because of the low yield strength of “copper” in this model
it appears so. The leading shock is refracted backward in the copper and reflects off the free
surface as a rarefaction fan. The explosive shock is normal to the cylinder axis at the center
but is bent backward near the wall, suggesting something like a Mach reflection. In Fig. 17
the shock has begun to reflect off the far copper wall. Note the jump in pressure scales. In
Fig. 18 the pressure had been released significantly by ballooning of the copper can. The
reflected shock is about half way back along the axis.

6. DISCUSSION

6.1 Implementation

We have implemented the multiphase tracked interface algorithms within a framework
for parallelism and data management called Chombo [14]. Chombo is a collection of C++
classes that includes dimension-independent support for box and set calculus, distributed
data management, and support for patch-based adaptive mesh refinement (AMR) based on
the approach of Berger and Colella [6] and grid generation models of Berger and Rigoutsos
[7]. Chombo derives from an object-oriented approach to AMR developed initially by
Crutchfield and Welcome [17].

To facilitate this discussion, we first review some standard AMR nomenclature. A re-
finement level L, or level L, refers to a set of data or operations characterized by a given
spatial resolution. Level 0 is the coarsest resolution, with grid spacing �x0, �y0, and �z0.
Level L + 1 is refined relative to level L by a factor RL : R0�x1 = �x0 · RL , the level L
refinement ratio, is restricted to be an integer power of 2. A patch is a rectangular region of
data associated with a particular level. A grid is the set of all patches at a given level. At a
given level the patches are nonoverlapping.

Level L + 1 grids are properly nested within their parent level L grid. This means that
a boundary of level L cells surrounds the level L + 1 grid, except where the level L + 1
grid abuts the boundary of the overall problem domain. The width of boundary cells is the
buffer size: an implementation-dependent adjustable parameter.

To advance level L data in time (say from time tnL to time tnL+1) requires some combina-
tion of the following steps. First, boundary conditions for the level L grid must be obtained
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FIG. 16. Pressure (0–20 GPa) at time 1.30.
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FIG. 17. Pressure (0–40 GPa) at time 2.39.
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by space–time interpolation from the level L − 1 parent grid, or by some prescription for
those boundary cells that lie outside the problem domain. Second, the algorithms described
above are used to update the solution on the level L grid. Third, those level L cells that are
underlain by additionally refined level L + 1 cells are adjusted to agree with the refined cell
time tnL+1 results. Fourth, to maintain conservation, the solution in level L cells that abut
the level L + 1 grid must be adjusted to be compatible with the cumulative fluxes calculated
on level L + 1 across the L + 1 grid boundary (flux correction).

To avoid the problem of space–time interpolation of the interface itself (represented either
as volume fractions or piecewise planar segments), we cover all interface cells with the max-
imum resolution grid. This also solves a potential flux correction issue: mass redistribution
effectively creates flux terms associated with 13 spatial directions (e.g., redistribution fluxes
may connect cell i, j, k to cell i + 1, j − 1, k + 1), whereas otherwise only the three cardinal
directions, x, y, and z, need be considered.

An important issue concerns the overall domain of dependence of the composite method
described here. In total the domain of dependence is 29 × 29 × 29 if volume fractions and
conserved quantities are chosen as the basic variables (see Table VI): the solution at a given
cell may depend on the data in the surrounding 24,389-cell neighborhood. If implemented
as a single stencil, then associated with each patch would be a ghost cell boundary with a
width of 14 cells. This has obvious and serious impact on computer memory requirements
and is clearly impractical.

Instead, the overall domain of dependence may be decomposed into a collection of smaller
stencils; however, doing so means that (i) methods must be provided for the space–time
interpolation of each new variable, which implies that (ii) the new variables must be stored
on two time levels on the parent grid. For example, given the algorithm decomposition
indicated in Table VI, the smallest stencil possible for the composite method is 9 × 9 × 9,
or a ghost width of 4. An AMR strategy based on this stencil would require storage of
interface data, apertures, the interface velocity field, and other “internal” variables at two
time levels on each parent grid, and a prescription for space–time interpolation of these
quantities.

In the implementation presented here, we designed a strategy based upon a stencil of
13 × 13 × 13 (ghost width 6), with conserved variables, volume fractions, and piecewise
planar interface segments chosen as basic variables. This strategy involves two inter-patch-
communication operations per time step. When the interface region is always fully refined,
only conservative variables need be space–time interpolated. The need for space–time in-
terpolation of the interface (�n, d) is circumvented.

TABLE VI

Stencils of Algorithm Components

Interface reconstruction 5 × 5 × 5
Aperture calculation 5 × 5 × 5
Data extension 5 × 5 × 5
Interface velocity 9 × 9 × 9
Volume fraction time advancing 5 × 5 × 5
Godunov integrators 9 × 9 × 9
Redistribution 5 × 5 × 5



3D EULERIAN SHOCK CAPTURING METHOD 75

6.2. Algorithmic Details

6.2.1. Redistribution

In the shock front tracking applications of Chern and Colella [9] and Bell et al. [4],
the mass deficit �M is decomposed in the sense of characteristics. If any characteristics
cross the front, then some fraction of �M is distributed to cells on the opposite side of
the front. In the present material interface tracking application, it does not make sense to
distribute mass across the front, whatever the characteristics. The correct generalization
of this approach would be to redistribute volume between phases, if so indicated by the
characteristic structure.

If one were to redistribute material phase volume across the fronts, then two problems
would arise. First, after this redistribution the volume fractions would not necessarily sum
to 1, and a renormalization would be required (as in Section 3.2). Second, it is possible
that after redistributing volumes in the sense of characteristics one would have a volume
fraction field that is inconsistent with the existence of a resolved interface: this volume
redistribution would smear the interface. For this reason, we do not decompose �M in
the sense of characteristics, and we instead redistribute this quantity on one side of the front
only.

6.2.2. Geometric Consistency

In (47) the normal ñ appearing on the left hand side is the normal of the surface that closes
the volume bounded by cell-face apertures Ai− 1

2 , j,k , etc. ñ is not, in general, equal to the

interface-normal determined as in Section 3.1, at tn (where the fluxes F B are computed),
tn+1, or elsewhere. Even if there exists a single planar interface, stationary in time, ñ would
not generally coincide with n because the cell-face apertures are averages of left- and
right-cell calculations (42).

We use (47) to compute AB , which is consistent with interface normal ñ. In (15)
we use this aperture with our interface flux F B , which is consistent with a different
normal n.

Note also that because of aperture averaging (42) we may compute a nonzero AB in cells
for which no interface had been detected, and in which F B is therefore not known. In this
case, we construct an estimated flux F B by averaging the flux over neighbor cells in which
it has been determined. This remedy assumes that the normal vector ñ in the current cell
(where F B had not been computed) is similar to normals n in those neighbor cells where
F B had been computed.

6.2.3. Source Terms

One way to discretize (1) is by solving the homogeneous part stably, using redistribution,
and then adding the source term contribution afterward:

Ũ n+1
i jk ←

redistribution
U ext,n+1

i jk (homogeneous) , (157a)

U n+1
i jk = Ũ n+1

i jk + �t
�n+1

i jk + �n
i jk

2�n+1
i jk

G
(

U
n+ 1

2
i jk

)
. (157b)
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FIG. 18. Pressure (0–10 GPa) at time 4.43.
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We use this approach for the plastic source terms h and K occurring in solid mechanics,
but with the simplification

U n+1
i jk = Ũ n+1

i jk + �tG

(
1

2

[
qext,n

i jk + q̃n+1
i jk

])
(158)

in lieu of (157b). That is, for these source terms we approximate the time-centered state by
averaging time tn (extended) primitive variables, and time tn+1 primitive variables obtianed
by redistribution of the homogeneous system of equations. We omit the factor �̄/� and, in
so doing, introduce on O(h) error.

A diffusion correction [25] is also introduced into the equations of solid mechanics, and
this too is approximated with (158).

Another approach to discretizing (1) is to introduce the source terms in the single-phase
solvers prior to redistribution:

U ext,n+1
i jk = · · · + �tG

(
1

2

[
qext,n

i jk + q̃ext,n+1
i jk

])
, (159a)

U n+1
i jk ←

redistribution
U ext,n+1

i jk . (159b)

This is the approach we use for all other source terms, including chemical reaction. Note
that in this second approach we are also omitting the factor �̄/�.

In our treatment of solid mechanics [25] we introduced two source terms to enforce con-
straints. One, a relaxation to enforce det(g) = �/�0, is implemented with (159). The other,
a diffusive term to enforce ∇ × gT = 0, follows redistribution (158). Likewise, following
redistribution we enforce det(F p) = 1 by rescaling.

6.2.4. Constraints and Extension

In extended solid cells the constraints det(g) = �/�0 and det(F p) = 1 may be violated by
the extension procedure described in Section 4.1. We therefore rescale g and F p in solid
extended cells after extension by averaging. The constriant ∇ · gT = 0 may also be violated
in the neighborhood of the extended cells, but the extended states are not further modified
to enforce this condition.

6.3. Future Directions

Colella [11] describes self-consistent centering schemes by which second-order-accurate
truncation errors have been demonstrated for stationary-boundary “Cartesian grid” prob-
lems [21, 27]. For moving boundaries one order lower is expected: O(h) for characteristic
variables and O(h2) for noncharacteristic ones.

Figure 19 illustrates the self-consistent centering idea in 1D. The quadrature solution
of the divergence form PDEs uses fluxes F centered at the centroid of the space–time

FIG. 19. Centroid-centered second-order fluxes give a first-order-accurate (O(h)) difference scheme.
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FIG. 20. First-order fluxes, and/or non-centroid-centered fluxes, give a zero-order-accurate (O(1)) difference
scheme.

boundaries of the fluid-occupied region of the computational cell, e.g., at points c, d, and e.
Data U , points a and b, are likewise centered at the centroid of the occupied fraction, not
the cell center. If the centroid-centered fluxes are second-order accurate, then a first-order-
accurate difference scheme results.

Material interfaces travel with speed v, the characteristic speed of the “0” family of
characteristics. Therefore, those variables associated with the “0” family will have truncation
errors of the underlying discretization scheme: O(h) with the self-consistent quadrature
method. Waves of the “+” families and “−” families coincide with the interface cells for
a time of order h/�, where � is the speed of the “±” characteristic wave. For variables
associated with these waves, we therefore expect a higher order of accuracy, i.e., O(h2).

The implementation described in this report is illustrated in 1D in Fig. 20. Our data U
is cell centered and thus differs from the interpretation of Fig. 19 by terms of order h.
Likewise, our cell-face fluxes are time centered (points c, d), not centroid centered, and
our interface flux (point e) is cell centered at time tn (but with time-centered source term
contributions). These differences also introduce order h discrepancies, lowering the order
of accuracy of the scheme. We therefore expect O(1) accuracy for “0” family characteristic
variables, and O(h) accuracy for “±” family characteristic variables.

The redistribution of mass �M , an order O(h�t) quantity (with consistent centering;
O(�t) with inconsistent centering) in the neighborhood of fractional cells expands slightly
the neighborhood where local O(h) (O(1)) truncation errors occur.

To adapt the algorithm described in this report to achieve a higher order of accuracy,
several modifications will be necessary. First, a higher order algorithm for the construction
of extended states is required in order to calculate second-order-accurate fluxes on mixed-
cell face, e.g., at point d in Figs. 19 and 20. Modiano and Colella [27] accomplished this by
using one-sided derivatives to fill boundary cells with extrapolated data. Second, it will be
necessary to treat conserved data as being centered at the centroid of the fluid-occupied cell
fraction, not the cell center. This affects the construction of slopes used in the calculation
of time- and face-centered states. Third, fluxes must be centered at the centroids. For face
states (e.g., point d), this may be accomplished by interpolation in space using neighboring
cell-face fluxes, and interpolation in time making use of the time tn extended data and time
tn+1 reference calculation. For interface fluxes, e.g., point e in Figs. 19 and 20 a recalculation
of the interface-normal Riemann problem using properly centered left and right states is
appropriate.

These same centering ideas might profitably be applied to the volume fraction advection
method in Section 3.2. There we used face-centered velocity fields to trace characteristics.
Instead, centroid-centered velocity fields might be used. For example, in tracing point p in
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Fig. 3 instead of using the face-centered velocity vy,i, j− 1
2 ,k , use the velocity interpolated to

the centroid of adhe (cf. (36)):

Py = y j− 1
2
− �t

[
vy,i, j− 1

2 ,k +
(

vy,i+1, j− 1
2 ,k − vy,i, j− 1

2 ,k

xi+1 − xi

)(
xi+ 1

2
− xi − vx,i+ 1

2 , j,k�t
)]

.

(160)

APPENDIX A: NOMENCLATURE

a material reference frame coordinate; (94).
A coefficient matrix in linearized PDE; (133), (79).
A aperture; Section 3.3.
A acoustic tensor, (135).
b plastic reference frame coordinate; (97).
b stress source term in linearized PDE; (137).
c expansion coefficient; (140).
c sound speed; (80).
ce elastic constant tensor; (156).
Ce elastic Green tensor; (100).
CV constant volume heat capacity; (104).
d distance of plane; (18).
e column of identity matrix; (93).
E total specific energy, internal plus kinetic; (92), (99).
E internal energy; Section 5.2.
f body force vector; (91), (93).
f yield surface; (118).
F conserved variable flux; (1).
F total deformation; (98).
F e elastic deformation; (98).
F p plastic deformation; (97).
g inverse total deformation; (94).
G conserved variable source terms; (1).
G shear modulus; (114).
h plastic deformation source term; (93).
h spatial resolution, �x ; Section 6.
I identity matrix
I1, I2, I3 invariants of isotropic matrix; (108).
K work hardening parameter source term; (93).
KS bulk modulus; Section 5.2.2, (154), (155).
l a left eigenvector; Section 4.2.3.
L matrix of left eigenvectors; (82).
L level of AMR refinement; Section 5.4.2.
�M generalized mass difference; (15).
M modulus of incompressibility; (23a).
n normal direction; (18).
P pressure; (91), (103).
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q primitive variable; (133), (79).
q variable in constitutive model for Grüneisen parameter; (112).
Q chemical potential energy; (91).
r a right eigenvector; Section 4.2.3.
rG, rK variable internal to universal equation of state model; Section 5.2.2.
R ideal gas constant; (102).
R matrix of right eigenvectors; (81).
RL refinement ratio; Section 5.4.2.
R shorthand for Riemann problem solution; Section 4.2.1.
s primitive variable source terms; (133), (79).
s front velocity; (151).
se elastic compliance tensor; (155).
S specific entropy; Section 5.2.
SOS sum of squares error; (19).
t time; (1).
T temperature; (104).
U conserved variables; (1).
v velocity; (91), (93).
v volume fraction sum; (21).
V cell volume; Sections 2, 3.2.
V advected volume; Section 3.2.
w redistribution weighting factor; (17).
W mass flux, Rankine-Hugoniot conditions; (143).
x spatial frame coordinate; (94).
Z measure of shock strength; (76).
� superscript denotes material phase.
� parameter in shear energy equation; (113).
� measure of shock resolution; (74).
� Grüneisen parameter; (112).
�p polytropic gas constant; (102).
� Lagrange undetermined multiplier in plasticity rate models; (119).
	 work hardening modulus; (117).

 work hardening parameter; (93).
� eigenvalue, wave speed; Sections 4.2.3, 5.3.3.
� volume fraction; Sections 3.1, 3.2, 2.
� diagonal matrix of eigenvectors; (83).
� a distance interpolation function; (72a).
� density; (91), (93).
� Cauchy stress; (101).
�Y yield stress; (118).

 a tangent direction; (123a), (124a).

 a time interpolation function; (45e).
ϒ domain of one computational cell; (3).

 heat source; (91), (93).
� flattening parameter; (78).
� a tangent direction; (123b), (124b).
� material domain; (1).
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